Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Investigation of Anti-Deliquesce Properties of Ca(NO3)2·4H2O Crystal Particles in Double-Layer Coated Materials with Epoxy Resins and Portland Cement
Corresponding Author(s) : Dechun Liu
Asian Journal of Chemistry,
Vol. 27 No. 8 (2015): Vol 27 Issue 8
Abstract
In order to improve anti-deliquesce properties and other unsatisfactory performance of Ca(NO3)2·4H2O crystals in applications, a double-layer coating technology with epoxy resins and Portland cement was used. Double-layer coated samples were characterized through FTIR, DTA and multiple optical microscopy spectrometers analysis and natural moisture absorption performance test in the atmosphere. The results showed that compared to epoxy coated materials the moisture absorption growth rate of these double-layer coated samples increased slowly and reduced about 85-90 %, which means that it effectively avoided Ca(NO3)2·4H2O crystals deliquescent at room temperature. It is considerable significance for double-layer coated Ca(NO3)2·4H2O crystals in the deep-rooted using fields of building functional materials, other industries and agriculture.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Tatsidjodoung, N. Le Pierrès and L. Luo, Renew. Sustain. Energy Rev., 18, 327 (2013); doi:10.1016/j.rser.2012.10.025.
- D. Zhou, C.Y. Zhao and Y. Tian, Appl. Energy, 92, 593 (2012); doi:10.1016/j.apenergy.2011.08.025.
- S. Gadzuric, M. Vranes and S. Dozic, J. Chem. Eng. Data, 55, 1990 (2010); doi:10.1021/je900927a.
- Q. Liang and R. Wang, Chem. Fertilizer Ind., 32, 21 (2005).
- L.B. Petrovic, V.J. Sovilj, J.M. Katona and J.L. Milanovic, J. Colloid Interface Sci., 342, 333 (2010); doi:10.1016/j.jcis.2009.10.077.
- D.C. Liu and J.H. Zhu, Asian J. Chem., 25, 6391 (2013); doi:10.14233/ajchem.2013.14685.
- A. Alum, A. Rashid, B. Mobasher and M. Abbaszadegan, Cement Concr. Compos., 30, 839 (2008); doi:10.1016/j.cemconcomp.2008.06.012.
- N.C. Collier and N.B. Milestone, Cement Concr. Res., 40, 452 (2010); doi:10.1016/j.cemconres.2009.10.007.
- P.M. Randall, Sci. Total Environ., 420, 300 (2012); doi:10.1016/j.scitotenv.2011.12.066.
- P. Randall and S. Chattopadhyay, J. Hazard. Mater., 114, 211 (2004); doi:10.1016/j.jhazmat.2004.08.010.
- K.O. Kjellsen and H. Justnes, Cement Concr. Compos., 26, 947 (2004); doi:10.1016/j.cemconcomp.2004.02.030.
- T.L. Hughes, C.M. Methven, T.G.J. Jones, S.E. Pelham, P. Fletcher and C. Hall, Adv. Cement Base. Mater., 2, 91 (1995); doi:10.1016/1065-7355(94)00031-X.
- R. Ylmén, U. Jäglid, B.M. Steenari and I. Panas, Cement Concr. Res., 39, 433 (2009); doi:10.1016/j.cemconres.2009.01.017.
- F. Djouani, C. Connan, M. Delamar, M.M. Chehimi and K. Benzarti, Construct. Build. Mater., 25, 411 (2011); doi:10.1016/j.conbuildmat.2010.02.035.
- 15 J. Björnström, A. Martinelli, A. Matic, L. Börjesson and I. Panas, Chem. Phys. Lett., 392, 242 (2004); doi:10.1016/j.cplett.2004.05.071.
- A. Hidalgo, S. Petit, C. Domingo, C. Alonso and C. Andrade, Cement Concr. Res., 37, 63 (2007); doi:10.1016/j.cemconres.2006.10.002.
- R. Medina, F. Haupert and A.K.J. Schlarb, Mater. Sci., 43, 3245 (2008); doi:10.1007/s10853-008-2547-8.
References
P. Tatsidjodoung, N. Le Pierrès and L. Luo, Renew. Sustain. Energy Rev., 18, 327 (2013); doi:10.1016/j.rser.2012.10.025.
D. Zhou, C.Y. Zhao and Y. Tian, Appl. Energy, 92, 593 (2012); doi:10.1016/j.apenergy.2011.08.025.
S. Gadzuric, M. Vranes and S. Dozic, J. Chem. Eng. Data, 55, 1990 (2010); doi:10.1021/je900927a.
Q. Liang and R. Wang, Chem. Fertilizer Ind., 32, 21 (2005).
L.B. Petrovic, V.J. Sovilj, J.M. Katona and J.L. Milanovic, J. Colloid Interface Sci., 342, 333 (2010); doi:10.1016/j.jcis.2009.10.077.
D.C. Liu and J.H. Zhu, Asian J. Chem., 25, 6391 (2013); doi:10.14233/ajchem.2013.14685.
A. Alum, A. Rashid, B. Mobasher and M. Abbaszadegan, Cement Concr. Compos., 30, 839 (2008); doi:10.1016/j.cemconcomp.2008.06.012.
N.C. Collier and N.B. Milestone, Cement Concr. Res., 40, 452 (2010); doi:10.1016/j.cemconres.2009.10.007.
P.M. Randall, Sci. Total Environ., 420, 300 (2012); doi:10.1016/j.scitotenv.2011.12.066.
P. Randall and S. Chattopadhyay, J. Hazard. Mater., 114, 211 (2004); doi:10.1016/j.jhazmat.2004.08.010.
K.O. Kjellsen and H. Justnes, Cement Concr. Compos., 26, 947 (2004); doi:10.1016/j.cemconcomp.2004.02.030.
T.L. Hughes, C.M. Methven, T.G.J. Jones, S.E. Pelham, P. Fletcher and C. Hall, Adv. Cement Base. Mater., 2, 91 (1995); doi:10.1016/1065-7355(94)00031-X.
R. Ylmén, U. Jäglid, B.M. Steenari and I. Panas, Cement Concr. Res., 39, 433 (2009); doi:10.1016/j.cemconres.2009.01.017.
F. Djouani, C. Connan, M. Delamar, M.M. Chehimi and K. Benzarti, Construct. Build. Mater., 25, 411 (2011); doi:10.1016/j.conbuildmat.2010.02.035.
15 J. Björnström, A. Martinelli, A. Matic, L. Börjesson and I. Panas, Chem. Phys. Lett., 392, 242 (2004); doi:10.1016/j.cplett.2004.05.071.
A. Hidalgo, S. Petit, C. Domingo, C. Alonso and C. Andrade, Cement Concr. Res., 37, 63 (2007); doi:10.1016/j.cemconres.2006.10.002.
R. Medina, F. Haupert and A.K.J. Schlarb, Mater. Sci., 43, 3245 (2008); doi:10.1007/s10853-008-2547-8.