Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Spectrofluorimetric Study on Inclusion Behaviour of p-Sulfonated Calix[4,6]arene with 1,10-Phenanthroline
Corresponding Author(s) : Li-Ming Du
Asian Journal of Chemistry,
Vol. 27 No. 7 (2015): Vol 27 Issue 7, 2015
Abstract
The supramolecular interaction of 1,10-phenanthroline (Phen) with p-sulfonated calix[n]arenes (SCnA, n = 4, 6) were studied using spectrofluorimetry, 1H NMR and molecular modeling calculations. The interaction mechanism of the inclusion complex was discussed and the various factors affecting the inclusion process were examined. It was found that the dramatic quenching of the fluorescence intensity of 1,10-phenanthroline was observed with the addition of the SCnA (n = 4, 6). This was due to 1,10-phenanthroline react with SCnA (n = 4, 6) to form stable complex. 1H NMR titration spectra testified that 1,10-phenanthroline was penetrated into the hydrophobic cavity of SCnA (n = 4, 6). This finding was confirmed using molecular dynamics calculations and the thermodynamic parameters of the complex. The calculated stability constant results showed that the SC6A-Phen complex was more stable than SC4A-Phen.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Liu, E.C. Yang and Y. Chen, Thermochim. Acta, 429, 163 (2005); doi:10.1016/j.tca.2005.03.002.
- S. Kunsági-Máté, K. Szabó, B. Lemli, I. Bitter, G. Nagy and L. Kollár, Thermochim. Acta, 425, 121 (2005); doi:10.1016/j.tca.2004.06.015.
- D.B. Qin, X.S. Zeng, Q.S. Li, F.B. Xu, H.B. Song and Z.Z. Zhang, Chem. Commun., 149, 147 (2006); doi:10.1039/b612421f.
- M. Lazzarotto, F.F. Nachtigall, E. Schnitzler and E.E. Castellano, Thermochim. Acta, 429, 111 (2005); doi:10.1016/j.tca.2004.11.032.
- G. Arena, A. Casnati, L. Mirone, D. Sciotto and R. Ungaro, Tetrahedron Lett., 38, 1999 (1997); doi:10.1016/S0040-4039(97)00215-3.
- P.A. Gale, Z. Chen, M.G.B. Drew, J.A. Heath and P.D. Beer, Polyhedron, 17, 405 (1998); doi:10.1016/S0277-5387(97)00389-6.
- H.S. Jung, H.J. Kim, J. Vicens and J.S. Kim, Tetrahedron Lett., 50, 983 (2009); doi:10.1016/j.tetlet.2008.12.026.
- S. Shinkai, K. Araki and O. Manabe, J. Am. Chem. Soc., 110, 7214 (1988); doi:10.1021/ja00229a046.
- S. Zhang and L. Echegoyen, Org. Lett., 6, 791 (2004); doi:10.1021/ol049957n.
- W. Sliwa and T. Girek, J. Incl. Phenom. Macrocycl. Chem., 66, 15 (2010); doi:10.1007/s10847-009-9678-7.
- H.J. Kim, S.H. Kim, J.H. Kim, L.N. Anh, J.H. Lee, C.H. Lee and J.S. Kim, Tetrahedron Lett., 50, 2782 (2009); doi:10.1016/j.tetlet.2009.03.149.
- O.M. Falana, H. Fred Koch, D. Max Roundhill, O.M. Falana, G.J. Lumetta and B.P. Hay, Chem. Commun., 503 (1998); doi:10.1039/a707786f.
- I. Matulkova and J. Rohovec, Polyhedron, 24, 311 (2005); doi:10.1016/j.poly.2004.11.008.
- F. Kubota, K. Shinohara, K. Shimojo, T. Oshima, M. Goto, S. Furusaki and T. Hano, Sep. Purif. Technol., 24, 93 (2001); doi:10.1016/S1383-5866(00)00215-X.
- S. Shinkai, K. Araki, T. Tsubaki, T. Arimura and O. Manabe, J. Chem. Soc. Perkin Trans. 1, 2297 (1987); doi:10.1039/P19870002297.
- G. Arena, A. Casnati, L. Mirone, D. Sciotto and R. Ungaro, Tetrahedron Lett., 38, 1999 (1997); doi:10.1016/S0040-4039(97)00215-3.
- G. Arena, A. Casnati, A. Contino, F.G. Gulino, D. Sciotto and R. Ungaro, J. Chem. Soc. Perkin Trans. II, 419 (2000); doi:10.1039/a909847j.
- A. Mendes, C. Bonal, N. Morel-Desrosiers, J.P. Morel and P. Malfreyt, J. Phys. Chem., 106, 4516 (2002); doi:10.1021/jp013848y.
- G. Arena, S. Gentile, F.G. Gulino, D. Sciotto and C. Sgarlata, Tetrahedron Lett., 45, 7091 (2004); doi:10.1016/j.tetlet.2004.07.108.
- W. Tao and M. Barra, J. Org. Chem., 66, 2158 (2001); doi:10.1021/jo001535d.
- Y. Liu, B.-H. Han and Y.-T. Chen, J. Org. Chem., 65, 6227 (2000); doi:10.1021/jo991654x.
- J.L. Atwood, T. Ness, P.J. Nichols and C.L. Raston, Cryst. Growth Des., 2, 171 (2002); doi:10.1021/cg0200053.
- Y.Y. Zhou, Q. Lu, C. Liu, S. She and L. Wang, Spectrochim. Acta A, 64, 748 (2006); doi:10.1016/j.saa.2005.07.075.
- W.Z. Yang and M.M. de Villiers, Eur. J. Pharmacol., 58, 629 (2004); doi:10.1016/j.ejpb.2004.04.010.
- Y.Y. Zhou, Q. Lu, C. Liu, S. She and L. Wang, Anal. Chim. Acta, 552, 152 (2005); doi:10.1016/j.aca.2005.07.038.
- A. Liu and J. Anzai, Anal. Chem., 76, 2975 (2004); doi:10.1021/ac0303970.
- I.G.J. de Avellar, M.M.M. Magalhães, A.B. Silva, L.L. Souza, A.C. Leitão and M. Hermes-Lima, Biochim. Biophys. Acta, 1675, 46 (2004); doi:10.1016/j.bbagen.2004.08.006.
- S.Y. Tsang, S.C. Tam, I. Bremner and M.J. Burkitt, Biochem. J., 317, 13 (1996).
- J.L. Atwood, G.W. Orr, N.C. Means, F. Hamada, H. Zhang, S.G. Bott and K.D. Robinson, Inorg. Chem., 31, 603 (1992); doi:10.1021/ic00030a015.
- S. Shinkai, K. Araki, T. Matsuda, N. Nishiyama, H. Ikeda, I. Takasu and M. Iwamoto, J. Am. Chem. Soc., 112, 9053 (1990); doi:10.1021/ja00181a004.
- Y. Liu, E.-C. Yang, Y. Chen, D.-S. Guo and F. Ding, Eur. J. Org. Chem., 4581 (2005); doi:10.1002/ejoc.200500354.
- N. Douteau-Guével, A.W. Coleman, J.-P. Morel and N. Morel-Desrosiers, J. Chem. Soc., Perkin Trans. 2, 629 (1999); doi:10.1039/a806855k.
- S. Shinkai, K. Araki, T. Matsuda, N. Nishiyama, H. Ikeda, I. Takasu and M. Iwamoto, J. Am. Chem. Soc., 112, 9053 (1990); doi:10.1021/ja00181a004.
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); doi:10.1103/PhysRevB.37.785.
- A.D. Becke, J. Chem. Phys., 88, 2547 (1988); doi:10.1063/1.454033; A.D. Becke, Phys. Rev. A, 38, 3098 (1988); doi:10.1103/PhysRevA.38.3098.
- Y. Liu, D.S. Guo, H.Y. Zhang, Y.H. Ma and E.C. Yang, J. Phys. Chem. B, 110, 3428 (2006); doi:10.1021/jp0545703.
References
Y. Liu, E.C. Yang and Y. Chen, Thermochim. Acta, 429, 163 (2005); doi:10.1016/j.tca.2005.03.002.
S. Kunsági-Máté, K. Szabó, B. Lemli, I. Bitter, G. Nagy and L. Kollár, Thermochim. Acta, 425, 121 (2005); doi:10.1016/j.tca.2004.06.015.
D.B. Qin, X.S. Zeng, Q.S. Li, F.B. Xu, H.B. Song and Z.Z. Zhang, Chem. Commun., 149, 147 (2006); doi:10.1039/b612421f.
M. Lazzarotto, F.F. Nachtigall, E. Schnitzler and E.E. Castellano, Thermochim. Acta, 429, 111 (2005); doi:10.1016/j.tca.2004.11.032.
G. Arena, A. Casnati, L. Mirone, D. Sciotto and R. Ungaro, Tetrahedron Lett., 38, 1999 (1997); doi:10.1016/S0040-4039(97)00215-3.
P.A. Gale, Z. Chen, M.G.B. Drew, J.A. Heath and P.D. Beer, Polyhedron, 17, 405 (1998); doi:10.1016/S0277-5387(97)00389-6.
H.S. Jung, H.J. Kim, J. Vicens and J.S. Kim, Tetrahedron Lett., 50, 983 (2009); doi:10.1016/j.tetlet.2008.12.026.
S. Shinkai, K. Araki and O. Manabe, J. Am. Chem. Soc., 110, 7214 (1988); doi:10.1021/ja00229a046.
S. Zhang and L. Echegoyen, Org. Lett., 6, 791 (2004); doi:10.1021/ol049957n.
W. Sliwa and T. Girek, J. Incl. Phenom. Macrocycl. Chem., 66, 15 (2010); doi:10.1007/s10847-009-9678-7.
H.J. Kim, S.H. Kim, J.H. Kim, L.N. Anh, J.H. Lee, C.H. Lee and J.S. Kim, Tetrahedron Lett., 50, 2782 (2009); doi:10.1016/j.tetlet.2009.03.149.
O.M. Falana, H. Fred Koch, D. Max Roundhill, O.M. Falana, G.J. Lumetta and B.P. Hay, Chem. Commun., 503 (1998); doi:10.1039/a707786f.
I. Matulkova and J. Rohovec, Polyhedron, 24, 311 (2005); doi:10.1016/j.poly.2004.11.008.
F. Kubota, K. Shinohara, K. Shimojo, T. Oshima, M. Goto, S. Furusaki and T. Hano, Sep. Purif. Technol., 24, 93 (2001); doi:10.1016/S1383-5866(00)00215-X.
S. Shinkai, K. Araki, T. Tsubaki, T. Arimura and O. Manabe, J. Chem. Soc. Perkin Trans. 1, 2297 (1987); doi:10.1039/P19870002297.
G. Arena, A. Casnati, L. Mirone, D. Sciotto and R. Ungaro, Tetrahedron Lett., 38, 1999 (1997); doi:10.1016/S0040-4039(97)00215-3.
G. Arena, A. Casnati, A. Contino, F.G. Gulino, D. Sciotto and R. Ungaro, J. Chem. Soc. Perkin Trans. II, 419 (2000); doi:10.1039/a909847j.
A. Mendes, C. Bonal, N. Morel-Desrosiers, J.P. Morel and P. Malfreyt, J. Phys. Chem., 106, 4516 (2002); doi:10.1021/jp013848y.
G. Arena, S. Gentile, F.G. Gulino, D. Sciotto and C. Sgarlata, Tetrahedron Lett., 45, 7091 (2004); doi:10.1016/j.tetlet.2004.07.108.
W. Tao and M. Barra, J. Org. Chem., 66, 2158 (2001); doi:10.1021/jo001535d.
Y. Liu, B.-H. Han and Y.-T. Chen, J. Org. Chem., 65, 6227 (2000); doi:10.1021/jo991654x.
J.L. Atwood, T. Ness, P.J. Nichols and C.L. Raston, Cryst. Growth Des., 2, 171 (2002); doi:10.1021/cg0200053.
Y.Y. Zhou, Q. Lu, C. Liu, S. She and L. Wang, Spectrochim. Acta A, 64, 748 (2006); doi:10.1016/j.saa.2005.07.075.
W.Z. Yang and M.M. de Villiers, Eur. J. Pharmacol., 58, 629 (2004); doi:10.1016/j.ejpb.2004.04.010.
Y.Y. Zhou, Q. Lu, C. Liu, S. She and L. Wang, Anal. Chim. Acta, 552, 152 (2005); doi:10.1016/j.aca.2005.07.038.
A. Liu and J. Anzai, Anal. Chem., 76, 2975 (2004); doi:10.1021/ac0303970.
I.G.J. de Avellar, M.M.M. Magalhães, A.B. Silva, L.L. Souza, A.C. Leitão and M. Hermes-Lima, Biochim. Biophys. Acta, 1675, 46 (2004); doi:10.1016/j.bbagen.2004.08.006.
S.Y. Tsang, S.C. Tam, I. Bremner and M.J. Burkitt, Biochem. J., 317, 13 (1996).
J.L. Atwood, G.W. Orr, N.C. Means, F. Hamada, H. Zhang, S.G. Bott and K.D. Robinson, Inorg. Chem., 31, 603 (1992); doi:10.1021/ic00030a015.
S. Shinkai, K. Araki, T. Matsuda, N. Nishiyama, H. Ikeda, I. Takasu and M. Iwamoto, J. Am. Chem. Soc., 112, 9053 (1990); doi:10.1021/ja00181a004.
Y. Liu, E.-C. Yang, Y. Chen, D.-S. Guo and F. Ding, Eur. J. Org. Chem., 4581 (2005); doi:10.1002/ejoc.200500354.
N. Douteau-Guével, A.W. Coleman, J.-P. Morel and N. Morel-Desrosiers, J. Chem. Soc., Perkin Trans. 2, 629 (1999); doi:10.1039/a806855k.
S. Shinkai, K. Araki, T. Matsuda, N. Nishiyama, H. Ikeda, I. Takasu and M. Iwamoto, J. Am. Chem. Soc., 112, 9053 (1990); doi:10.1021/ja00181a004.
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); doi:10.1103/PhysRevB.37.785.
A.D. Becke, J. Chem. Phys., 88, 2547 (1988); doi:10.1063/1.454033; A.D. Becke, Phys. Rev. A, 38, 3098 (1988); doi:10.1103/PhysRevA.38.3098.
Y. Liu, D.S. Guo, H.Y. Zhang, Y.H. Ma and E.C. Yang, J. Phys. Chem. B, 110, 3428 (2006); doi:10.1021/jp0545703.