Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Influence of NaCl on Azophloxine Decolouration by Adsorption and Photocatalytic Degradation
Corresponding Author(s) : Wenjie Zhang
Asian Journal of Chemistry,
Vol. 27 No. 7 (2015): Vol 27 Issue 7, 2015
Abstract
A combination of adsorption and photocatalytic decolouration was explored in decolouration of azophloxine. When the activated carbon is used alone, the adsorption efficiency on the material is not as high as on the composite. Photocatalytic degradation of the dye on TiO2 is apparently stronger than adsorption on the same amount of activated carbon. The concentration of azophloxine in NaCl solution does not change much with the variation of NaCl solution concentration. The photogenerated hydroxyl radicals can be removed by the Cl– ion and therefore, photocatalytic degradation efficiency is not as high as that in the solution without NaCl. A composite of 400 mg/L TiO2 and 200 mg/L activated carbon was also used to study the effect of NaCl on azophloxine decolouration. After the addition of NaCl, decolouration of the azophloxine is always higher than that without using NaCl in the solution.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.A. Dastgheib, T. Karanfil and W. Cheng, Carbon, 42, 547 (2004); doi:10.1016/j.carbon.2003.12.062.
- W. Buchanan, F. Roddick and N. Porter, Water Res., 42, 3335 (2008); doi:10.1016/j.watres.2008.04.014.
- S.W. Krasner, P. Westerhoff, B.Y. Chen, B.E. Rittmann and G. Amy, Environ. Sci. Technol., 43, 8320 (2009); doi:10.1021/es901611m.
- W.F. Lin, Z.S. Yu, H.X. Zhang and I.P. Thompson, Water Res., 52, 218 (2014); doi:10.1016/j.watres.2013.10.071.
- H.M. Pervin, P.G. Dennis, H.J. Lim, G.W. Tyson, D.J. Batstone and P.L. Bond, Water Res., 47, 7098 (2013); doi:10.1016/j.watres.2013.07.053.
- M.-T. Guo, Q.-B. Yuan and J. Yang, Water Res., 47, 6388 (2013); doi:10.1016/j.watres.2013.08.012.
- D.S. Guo, Q.T. Shi, B.B. He and X.Y. Yuan, J. Hazard. Mater., 186, 1788 (2011); doi:10.1016/j.jhazmat.2010.12.068.
- K. Mohanty, D. Das and M.N. Biswas, Sep. Purif. Technol., 58, 311 (2008); doi:10.1016/j.seppur.2007.05.005.
- L. Li, M. Gao, J.X. Liu and X.S. Guo, J. Environ. Sci. (China), 23, 711 (2011); doi:10.1016/S1001-0742(10)60466-4.
- D.H. Quiñones, A. Rey, P.M. Álvarez, F.J. Beltrán and P.K. Plucinski, Appl. Catal. B, 144, 96 (2014); doi:10.1016/j.apcatb.2013.07.005.
- M.R. Hoffmann, S.T. Martin, W. Choi and W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
- A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. Chem., 1, 1 (2000); doi:10.1016/S1389-5567(00)00002-2.
References
S.A. Dastgheib, T. Karanfil and W. Cheng, Carbon, 42, 547 (2004); doi:10.1016/j.carbon.2003.12.062.
W. Buchanan, F. Roddick and N. Porter, Water Res., 42, 3335 (2008); doi:10.1016/j.watres.2008.04.014.
S.W. Krasner, P. Westerhoff, B.Y. Chen, B.E. Rittmann and G. Amy, Environ. Sci. Technol., 43, 8320 (2009); doi:10.1021/es901611m.
W.F. Lin, Z.S. Yu, H.X. Zhang and I.P. Thompson, Water Res., 52, 218 (2014); doi:10.1016/j.watres.2013.10.071.
H.M. Pervin, P.G. Dennis, H.J. Lim, G.W. Tyson, D.J. Batstone and P.L. Bond, Water Res., 47, 7098 (2013); doi:10.1016/j.watres.2013.07.053.
M.-T. Guo, Q.-B. Yuan and J. Yang, Water Res., 47, 6388 (2013); doi:10.1016/j.watres.2013.08.012.
D.S. Guo, Q.T. Shi, B.B. He and X.Y. Yuan, J. Hazard. Mater., 186, 1788 (2011); doi:10.1016/j.jhazmat.2010.12.068.
K. Mohanty, D. Das and M.N. Biswas, Sep. Purif. Technol., 58, 311 (2008); doi:10.1016/j.seppur.2007.05.005.
L. Li, M. Gao, J.X. Liu and X.S. Guo, J. Environ. Sci. (China), 23, 711 (2011); doi:10.1016/S1001-0742(10)60466-4.
D.H. Quiñones, A. Rey, P.M. Álvarez, F.J. Beltrán and P.K. Plucinski, Appl. Catal. B, 144, 96 (2014); doi:10.1016/j.apcatb.2013.07.005.
M.R. Hoffmann, S.T. Martin, W. Choi and W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. Chem., 1, 1 (2000); doi:10.1016/S1389-5567(00)00002-2.