Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Cyclic Microwave-Assisted Sol-Gel Process of KGd(MoO4)2:Er3+/Yb3+ Phosphors and Upconversion of their Photoluminescence Properties
Corresponding Author(s) : Chang Sung Lim
Asian Journal of Chemistry,
Vol. 27 No. 7 (2015): Vol 27 Issue 7, 2015
Abstract
KGd1-x(MoO4)2:Er3+/Yb3+ phosphors with doping concentrations of Er3+ and Yb3+ (x = Er3+ + Yb3+, Er3+ = 0.05, 0.1, 0.2 and Yb3+ = 0.2, 0.45) Er3+ and Yb3+ (Er3+ = 0.05, 0.1, 0.2 and Yb3+ = 0.2, 0.45) were successfully synthesized by a cyclic microwave-assisted sol-gel process and the upconversion and spectroscopic properties were investigated. Well-crystallized particles showed a fine and homogeneous morphology with particle sizes of 2-8 μm. Under excitation at 980 nm, KGd0.7(MoO4)2:Er0.1Yb0.2 and KGd0.5(MoO4)2:Er0.05Yb0.45 particles exhibited a strong 525 nm emission band, a weak 550 nm emission band in the green region and a very weak 655 nm emission band in the red region. The Raman spectra of KGd0.8(MoO4)2:Er0.2, KGd0.7(MoO4)2:Er0.1Yb0.2 and KGd0.5(MoO4)2:Er0.05Yb0.45 particles indicated the domination of strong peaks at higher frequencies (1050, 1065, 1125, 1185, 1284, 1350 and 1420 cm-1) and at lower frequencies (258, 388, 462, 558, 630 and 674 cm-1).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Lin, Y. Zhao, S.Q. Wang, M. Liu, Z.F. Duan, Y.M. Chen, F. Li, F. Xu and T.J. Lu, Bio. Adv., 30, 1551 (2012); doi:10.1016/j.biotechadv.2012.04.009.
- M. Wang, G. Abbineni, A. Clevenger, C. Mao and S. Xu, Nanomedicine, 7, 710 (2011); doi:10.1016/j.nano.2011.02.013.
- A. Shalav, B.S. Richards and M.A. Green, Sol. Energy Mater. Sol. Cells, 91, 829 (2007); doi:10.1016/j.solmat.2007.02.007.
- C. Guo, H.K. Yang and J.H. Jeong, J. Lumin., 130, 1390 (2010); doi:10.1016/j.jlumin.2010.02.052.
- J. Liao, D. Zhou, B. Yang, R. Liu, Q. Zhang and Q. Zhou, J. Lumin., 134, 533 (2013); doi:10.1016/j.jlumin.2012.07.033.
- J. Sun, J. Xian and H. Du, J. Phys. Chem. Solids, 72, 207 (2011); doi:10.1016/j.jpcs.2010.12.013.
- T. Li, C. Guo, Y. Wu, L. Li and J.H. Jeong, J. Alloys Comp., 540, 107 (2012); doi:10.1016/j.jallcom.2012.04.052.
- M. Nazarov and D.Y. Noh, J. Rare Earths, 28, 1 (2010); doi:10.1016/S1002-0721(10)60390-0.
- J. Sun, W. Zhang, W. Zhang and H. Du, Mater. Res. Bull., 47, 786 (2012); doi:10.1016/j.materresbull.2011.12.005.
- H. Du, Y. Lan, Z. Xia and J. Sun, Mater. Res. Bull., 44, 1660 (2009); doi:10.1016/j.materresbull.2009.04.009.
- Z. Wang, H. Liang, M. Gong and Q. Su, J. Alloys Comp., 432, 308 (2007); doi:10.1016/j.jallcom.2006.06.008.
- M. Haque and D.K. Kim, Mater. Lett., 63, 793 (2009); doi:10.1016/j.matlet.2009.01.018.
- C. Zhao, X. Yin, F. Huang and Y. Hang, J. Solid State Chem., 184, 3190 (2011); doi:10.1016/j.jssc.2011.09.025.
- L. Qin, Y. Huang, T. Tsuboi and H.J. Seo, Mater. Res. Bull., 47, 4498 (2012); doi:10.1016/j.materresbull.2012.10.004.
- Y.L. Yang, X.M. Li, W.L. Feng, W.L. Li and C.Y. Tao, J. Alloys Comp., 505, 555 (2010); doi:10.1016/j.jallcom.2010.06.072.
- Y. Tian, B. Chen, B. Tian, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang and Q. Meng, J. Alloys Comp., 509, 6096 (2011); doi:10.1016/j.jallcom.2011.03.034.
- Y. Huang, L. Zhou, L. Yang and Z. Tang, Opt. Mater., 33, 777 (2011); doi:10.1016/j.optmat.2010.12.015.
- Y. Tian, B. Chen, B. Tian, J. Sun, X. Li, J. Zhang, L. Cheng, H. Zhong, H. Zhong, Q. Meng and R. Hua, Physica B, 407, 2556 (2012); doi:10.1016/j.physb.2012.03.066.
- Z. Wang, H. Liang, L. Zhou, J. Wang, M. Gong and Q. Su, J. Lumin., 128, 147 (2008); doi:10.1016/j.jlumin.2007.07.001.
- Q. Chen, L. Qin, Z. Feng, R. Ge, X. Zhao and H. Xu, J. Rare Earths, 29, 843 (2011); doi:10.1016/S1002-0721(10)60553-4.
- X. Shen, L. Li, F. He, X. Meng and F. Song, Mater. Chem. Phys., 132, 471 (2012); doi:10.1016/j.matchemphys.2011.11.055.
- J. Zhang, X. Wang, X. Zhang, X. Zhao, X. Liu and L. Peng, Inorg. Chem. Commun., 14, 1723 (2011); doi:10.1016/j.inoche.2011.07.015.
- S. Das, A.K. Mukhopadhyay, S. Datta and D. Basu, Bull. Mater. Sci., 32, 1 (2009); doi:10.1007/s12034-009-0001-4.
- T. Thongtem, A. Phuruangrat and S. Thongtem, J. Nanopart. Res., 12, 2287 (2010); doi:10.1007/s11051-009-9797-5.
- C.S. Lim, Mater. Res. Bull., 48, 3805 (2013); doi:10.1016/j.materresbull.2013.05.090.
- W. Lu, L. Cheng, J. Sun, H. Zhong, X. Li, Y. Tian, J. Wan, Y. Zheng, L. Huang, T. Yu, H. Yu and B. Chen, Physica B, 405, 3284 (2010); doi:10.1016/j.physb.2010.04.061.
- J. Sun, J. Xian, X. Zhang and H. Du, J. Rare Earths, 29, 32 (2011); doi:10.1016/S1002-0721(10)60396-1.
- Q. Sun, X. Chen, Z. Liu, F. Wang, Z. Jiang and C. Wang, J. Alloys Comp., 509, 5336 (2011); doi:10.1016/j.jallcom.2010.12.212.
References
M. Lin, Y. Zhao, S.Q. Wang, M. Liu, Z.F. Duan, Y.M. Chen, F. Li, F. Xu and T.J. Lu, Bio. Adv., 30, 1551 (2012); doi:10.1016/j.biotechadv.2012.04.009.
M. Wang, G. Abbineni, A. Clevenger, C. Mao and S. Xu, Nanomedicine, 7, 710 (2011); doi:10.1016/j.nano.2011.02.013.
A. Shalav, B.S. Richards and M.A. Green, Sol. Energy Mater. Sol. Cells, 91, 829 (2007); doi:10.1016/j.solmat.2007.02.007.
C. Guo, H.K. Yang and J.H. Jeong, J. Lumin., 130, 1390 (2010); doi:10.1016/j.jlumin.2010.02.052.
J. Liao, D. Zhou, B. Yang, R. Liu, Q. Zhang and Q. Zhou, J. Lumin., 134, 533 (2013); doi:10.1016/j.jlumin.2012.07.033.
J. Sun, J. Xian and H. Du, J. Phys. Chem. Solids, 72, 207 (2011); doi:10.1016/j.jpcs.2010.12.013.
T. Li, C. Guo, Y. Wu, L. Li and J.H. Jeong, J. Alloys Comp., 540, 107 (2012); doi:10.1016/j.jallcom.2012.04.052.
M. Nazarov and D.Y. Noh, J. Rare Earths, 28, 1 (2010); doi:10.1016/S1002-0721(10)60390-0.
J. Sun, W. Zhang, W. Zhang and H. Du, Mater. Res. Bull., 47, 786 (2012); doi:10.1016/j.materresbull.2011.12.005.
H. Du, Y. Lan, Z. Xia and J. Sun, Mater. Res. Bull., 44, 1660 (2009); doi:10.1016/j.materresbull.2009.04.009.
Z. Wang, H. Liang, M. Gong and Q. Su, J. Alloys Comp., 432, 308 (2007); doi:10.1016/j.jallcom.2006.06.008.
M. Haque and D.K. Kim, Mater. Lett., 63, 793 (2009); doi:10.1016/j.matlet.2009.01.018.
C. Zhao, X. Yin, F. Huang and Y. Hang, J. Solid State Chem., 184, 3190 (2011); doi:10.1016/j.jssc.2011.09.025.
L. Qin, Y. Huang, T. Tsuboi and H.J. Seo, Mater. Res. Bull., 47, 4498 (2012); doi:10.1016/j.materresbull.2012.10.004.
Y.L. Yang, X.M. Li, W.L. Feng, W.L. Li and C.Y. Tao, J. Alloys Comp., 505, 555 (2010); doi:10.1016/j.jallcom.2010.06.072.
Y. Tian, B. Chen, B. Tian, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang and Q. Meng, J. Alloys Comp., 509, 6096 (2011); doi:10.1016/j.jallcom.2011.03.034.
Y. Huang, L. Zhou, L. Yang and Z. Tang, Opt. Mater., 33, 777 (2011); doi:10.1016/j.optmat.2010.12.015.
Y. Tian, B. Chen, B. Tian, J. Sun, X. Li, J. Zhang, L. Cheng, H. Zhong, H. Zhong, Q. Meng and R. Hua, Physica B, 407, 2556 (2012); doi:10.1016/j.physb.2012.03.066.
Z. Wang, H. Liang, L. Zhou, J. Wang, M. Gong and Q. Su, J. Lumin., 128, 147 (2008); doi:10.1016/j.jlumin.2007.07.001.
Q. Chen, L. Qin, Z. Feng, R. Ge, X. Zhao and H. Xu, J. Rare Earths, 29, 843 (2011); doi:10.1016/S1002-0721(10)60553-4.
X. Shen, L. Li, F. He, X. Meng and F. Song, Mater. Chem. Phys., 132, 471 (2012); doi:10.1016/j.matchemphys.2011.11.055.
J. Zhang, X. Wang, X. Zhang, X. Zhao, X. Liu and L. Peng, Inorg. Chem. Commun., 14, 1723 (2011); doi:10.1016/j.inoche.2011.07.015.
S. Das, A.K. Mukhopadhyay, S. Datta and D. Basu, Bull. Mater. Sci., 32, 1 (2009); doi:10.1007/s12034-009-0001-4.
T. Thongtem, A. Phuruangrat and S. Thongtem, J. Nanopart. Res., 12, 2287 (2010); doi:10.1007/s11051-009-9797-5.
C.S. Lim, Mater. Res. Bull., 48, 3805 (2013); doi:10.1016/j.materresbull.2013.05.090.
W. Lu, L. Cheng, J. Sun, H. Zhong, X. Li, Y. Tian, J. Wan, Y. Zheng, L. Huang, T. Yu, H. Yu and B. Chen, Physica B, 405, 3284 (2010); doi:10.1016/j.physb.2010.04.061.
J. Sun, J. Xian, X. Zhang and H. Du, J. Rare Earths, 29, 32 (2011); doi:10.1016/S1002-0721(10)60396-1.
Q. Sun, X. Chen, Z. Liu, F. Wang, Z. Jiang and C. Wang, J. Alloys Comp., 509, 5336 (2011); doi:10.1016/j.jallcom.2010.12.212.