Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Poly(aryl ether) Dendritic Structures Based on 1,4,8,11-Tetraazacyclotetradecane Core: Synthesis, Characterization, Photophysical Properties and Biological activity
Corresponding Author(s) : M. Dilek
Asian Journal of Chemistry,
Vol. 27 No. 7 (2015): Vol 27 Issue 7, 2015
Abstract
This work describes the synthesis of two new dendrimers consisting of a 1,4,8,11-tetraazacyclotetradecane (cyclam) core appended with poly(aryl ether) dendritic structures carrying a donor (4-methyl-7-hydroxycoumarin) on the surface. Its structure was determined by 1H NMR, 13C NMR and elemental analysis. The photophysical properties of the series of poly(aryl ether) dendrimers have been determined and the effect of the generation number on the absorption and emission properties of the synthesized dendritic structures was investigated. As the chromophore group number on the surface of the dendritic structure increased, molar absorptivity coefficients and emission intensities of the structures were found to increase. The prepared dendritic structures were tested for their antimicrobial activity against, Salmonella typhimurium NRRLB, Micrococcus luteus, Pseudomonas aeruginosa, Enterococcus fecalis ATCC-29212, Bacillus cereus ATCC-117787, Klepsiella pneumonia, Bacillus subtilis NRS-744, Proteus vulgoris, Yersinia enterolitica and Saccharomyces cereviciae. Synthesized dendritic structures showed moderate activity against different strains of bacteria.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.R. Newkome, C.N. Moorefield and F. Vögtle, Dendrimers and Dendrons: Concepts, Syntheses, Applications, Wiley-VCH: New York, edn 2, p. 1-10 (2001).
- A.W. Bosman, H.M. Janssen and E.W. Meijer, Chem. Rev., 99, 1665 (1999); doi:10.1021/cr970069y.
- M. Fischer and F. Vögtle, Angew. Chem. Int. Ed., 38, 884 (1999); doi:10.1002/(SICI)1521-3773(19990401)38:7<884::AID-ANIE884>3.0.CO;2-K.
- O.A. Matthews, A.N. Shipway and J.F. Stoddart, Prog. Polym. Sci., 23, 1 (1998); doi:10.1016/S0079-6700(97)00025-7.
- D.A. Tomalia, Adv. Mater., 6, 529 (1994); doi:10.1002/adma.19940060703.
- F. Zeng and S.C. Zimmerman, Chem. Rev., 97, 1681 (1997); doi:10.1021/cr9603892.
- E.W. Meijer and M.H.P. van Genderen, Nature, 426, 128 (2003); doi:10.1038/426128a.
- U. Hahn, M. Gorka, F. Vögtle, V. Vicinelli, P. Ceroni, M. Maestri and V. Balzani, Angew. Chem. Int. Ed., 41, 3595 (2002); doi:10.1002/1521-3773(20021004)41:19<3595::AID-ANIE3595>3.0.CO;2-B.
- S.L. Gilat, A. Adronov and J.M.J. Frechet, Angew. Chem. Int. Ed. Engl., 38, 1422 (1999); doi:10.1002/(SICI)1521-3773(19990517)38:10<1422::AID-ANIE1422>3.0.CO;2-V.
- J. Pan, W. Zhu, S. Li, J. Xu and H. Tian, Eur. J. Org. Chem., 2006, 986 (2006); doi:10.1002/ejoc.200500642.
- X. Hu, A. Damjanovic, T. Ritz and K. Schulten, Proc. Natl. Acad. Sci. USA, 95, 5935 (1998); doi:10.1073/pnas.95.11.5935.
- J.M.J. Frechet, Science, 263, 1710 (1994); doi:10.1126/science.8134834.
- C.J. Hawker and J.M.J. Frechet, J. Am. Chem. Soc., 112, 7638 (1990); doi:10.1021/ja00177a027.
- C.J. Hawker and J.M.J. Frechet, Macromolecules, 23, 4726 (1990); doi:10.1021/ma00223a036.
- J. Issberner, R. Moors and F. Vögtle, Angew. Chem. Int. Ed. Engl., 33, 2413 (1995); doi:10.1002/anie.199424131.
- D. Seebach, J.M. Lapierre, K. Skobridis and G. Greiveldinger, Angew. Chem. Int. Ed. Engl., 33, 440 (1994); doi:10.1002/anie.199404401.
- C. Devadoss, P. Bharathi and J.S. Moore, J. Am. Chem. Soc., 118, 9635 (1996); doi:10.1021/ja961418t.
- T. Aida and D.-L. Jiang, Nature, 388, 454 (1997); doi:10.1038/41290.
- I. Gitsov and J.M.J. Frechet, Macromolecules, 26, 6536 (1993); doi:10.1021/ma00076a035.
- K.L. Wooley, C.J. Hawker and J.M.J. Frechet, J. Chem. Soc., Perkin Trans. I, 1059 (1991); doi:10.1039/p19910001059.
- C.J. Hawker, E.E. Malmström, C.W. Frank and J.P. Kampf, J. Am. Chem. Soc., 119, 9903 (1997); doi:10.1021/ja972027x.
- K.P. Wainwright, Coord. Chem. Rev., 166, 35 (1997); doi:10.1016/S0010-8545(97)00003-9.
- S.F. Lincoln, Coord. Chem. Rev., 166, 255 (1997); doi:10.1016/S0010-8545(97)00044-1.
- M. Meyer, V. Dahaoui-Gindrey, C. Lecomte and R. Guilard, Coord. Chem. Rev., 178-180, 1313 (1998); doi:10.1016/S0010-8545(98)00169-6.
- L.F. Lindoy, Adv. Inorg. Chem., 45, 75 (1998); doi:10.1016/S0898-8838(08)60025-2.
- N.J. Youn and S.-K. Chang, Tetrahedron Lett., 46, 125 (2005); doi:10.1016/j.tetlet.2004.11.003.
- C. Saudan, P. Ceroni, V. Vicinelli, M. Maestri, V. Balzani, M. Gorka, S.-K. Lee, J. Heyst and F. Vogtle Dalton Trans., 1597 (2004); doi:10.1039/b403664f.
- C. Saudan, V. Balzani, P. Ceroni, M. Gorka, M. Maestri, V. Vicinelli and F. Vögtle, Tetrahedron, 59, 3845 (2003); doi:10.1016/S0040-4020(03)00434-4.
- X. Liang and P.J. Sadler, Chem. Soc. Rev., 33, 246 (2004); doi:10.1039/b313659k.
- J.W. Sibert, A.H. Cory and J.G. Cory, Chem. Commun., 154 (2002); doi:10.1039/b107899m.
- P. Caravan, J.J. Ellison, T.J. McMurry and W.H. Lauffer, Chem. Rev., 99, 2293 (1999); doi:10.1021/cr980440x.
- M. Engeser, L. Fabbrizzi, M. Licchelli and D. Sacchi, Chem. Commun., 1191 (1999); doi:10.1039/a901931f.
- G. Bergamini, P. Ceroni, M. Maestri, S.-K. Lee, J. van Heyst and F. Vögtle, Inorg. Chim. Acta, 360, 1043 (2007); doi:10.1016/j.ica.2006.07.084.
- G. Bergamini, E. Marchi and P. Ceroni, Coord. Chem. Rev., 255, 2458 (2011); doi:10.1016/j.ccr.2011.01.022.
- M. Aydınlı, M. Tutaş, B. Atasoy and Ö.A. Bozdemir, React. Funct. Polym., 65, 317 (2005); doi:10.1016/j.reactfunctpolym.2005.07.004.
- M. Dilek and F. Kezer, J. Macromol. Sci. Pure Appl. Chem., 46, 591 (2009); doi:10.1080/10601320902851835.
- O. Dilek, M.Sc. Thesis, University of Afyon Kocatepe, Afyonkarahisar, Turkey (2009).
- I.F. Connerton, in ed.: G.W. Gould, Analysis of Membrane Proteins, Portland: London, p. 177-179 (1994).
- E.C.Z. Chan, M.J. Pelczar and N.R. Krieg, Agar Diffusion Method in Laboratory Exercise in Microbiology, Mc-Graw Hill, New York, p. 225-229 (1993).
- J.A. Desai, U. Dayal and P.H. Parsania, J. Macromol. Sci. Pure Appl. Chem., 33, 1113 (1996); doi:10.1080/10601329608010908.
References
G.R. Newkome, C.N. Moorefield and F. Vögtle, Dendrimers and Dendrons: Concepts, Syntheses, Applications, Wiley-VCH: New York, edn 2, p. 1-10 (2001).
A.W. Bosman, H.M. Janssen and E.W. Meijer, Chem. Rev., 99, 1665 (1999); doi:10.1021/cr970069y.
M. Fischer and F. Vögtle, Angew. Chem. Int. Ed., 38, 884 (1999); doi:10.1002/(SICI)1521-3773(19990401)38:7<884::AID-ANIE884>3.0.CO;2-K.
O.A. Matthews, A.N. Shipway and J.F. Stoddart, Prog. Polym. Sci., 23, 1 (1998); doi:10.1016/S0079-6700(97)00025-7.
D.A. Tomalia, Adv. Mater., 6, 529 (1994); doi:10.1002/adma.19940060703.
F. Zeng and S.C. Zimmerman, Chem. Rev., 97, 1681 (1997); doi:10.1021/cr9603892.
E.W. Meijer and M.H.P. van Genderen, Nature, 426, 128 (2003); doi:10.1038/426128a.
U. Hahn, M. Gorka, F. Vögtle, V. Vicinelli, P. Ceroni, M. Maestri and V. Balzani, Angew. Chem. Int. Ed., 41, 3595 (2002); doi:10.1002/1521-3773(20021004)41:19<3595::AID-ANIE3595>3.0.CO;2-B.
S.L. Gilat, A. Adronov and J.M.J. Frechet, Angew. Chem. Int. Ed. Engl., 38, 1422 (1999); doi:10.1002/(SICI)1521-3773(19990517)38:10<1422::AID-ANIE1422>3.0.CO;2-V.
J. Pan, W. Zhu, S. Li, J. Xu and H. Tian, Eur. J. Org. Chem., 2006, 986 (2006); doi:10.1002/ejoc.200500642.
X. Hu, A. Damjanovic, T. Ritz and K. Schulten, Proc. Natl. Acad. Sci. USA, 95, 5935 (1998); doi:10.1073/pnas.95.11.5935.
J.M.J. Frechet, Science, 263, 1710 (1994); doi:10.1126/science.8134834.
C.J. Hawker and J.M.J. Frechet, J. Am. Chem. Soc., 112, 7638 (1990); doi:10.1021/ja00177a027.
C.J. Hawker and J.M.J. Frechet, Macromolecules, 23, 4726 (1990); doi:10.1021/ma00223a036.
J. Issberner, R. Moors and F. Vögtle, Angew. Chem. Int. Ed. Engl., 33, 2413 (1995); doi:10.1002/anie.199424131.
D. Seebach, J.M. Lapierre, K. Skobridis and G. Greiveldinger, Angew. Chem. Int. Ed. Engl., 33, 440 (1994); doi:10.1002/anie.199404401.
C. Devadoss, P. Bharathi and J.S. Moore, J. Am. Chem. Soc., 118, 9635 (1996); doi:10.1021/ja961418t.
T. Aida and D.-L. Jiang, Nature, 388, 454 (1997); doi:10.1038/41290.
I. Gitsov and J.M.J. Frechet, Macromolecules, 26, 6536 (1993); doi:10.1021/ma00076a035.
K.L. Wooley, C.J. Hawker and J.M.J. Frechet, J. Chem. Soc., Perkin Trans. I, 1059 (1991); doi:10.1039/p19910001059.
C.J. Hawker, E.E. Malmström, C.W. Frank and J.P. Kampf, J. Am. Chem. Soc., 119, 9903 (1997); doi:10.1021/ja972027x.
K.P. Wainwright, Coord. Chem. Rev., 166, 35 (1997); doi:10.1016/S0010-8545(97)00003-9.
S.F. Lincoln, Coord. Chem. Rev., 166, 255 (1997); doi:10.1016/S0010-8545(97)00044-1.
M. Meyer, V. Dahaoui-Gindrey, C. Lecomte and R. Guilard, Coord. Chem. Rev., 178-180, 1313 (1998); doi:10.1016/S0010-8545(98)00169-6.
L.F. Lindoy, Adv. Inorg. Chem., 45, 75 (1998); doi:10.1016/S0898-8838(08)60025-2.
N.J. Youn and S.-K. Chang, Tetrahedron Lett., 46, 125 (2005); doi:10.1016/j.tetlet.2004.11.003.
C. Saudan, P. Ceroni, V. Vicinelli, M. Maestri, V. Balzani, M. Gorka, S.-K. Lee, J. Heyst and F. Vogtle Dalton Trans., 1597 (2004); doi:10.1039/b403664f.
C. Saudan, V. Balzani, P. Ceroni, M. Gorka, M. Maestri, V. Vicinelli and F. Vögtle, Tetrahedron, 59, 3845 (2003); doi:10.1016/S0040-4020(03)00434-4.
X. Liang and P.J. Sadler, Chem. Soc. Rev., 33, 246 (2004); doi:10.1039/b313659k.
J.W. Sibert, A.H. Cory and J.G. Cory, Chem. Commun., 154 (2002); doi:10.1039/b107899m.
P. Caravan, J.J. Ellison, T.J. McMurry and W.H. Lauffer, Chem. Rev., 99, 2293 (1999); doi:10.1021/cr980440x.
M. Engeser, L. Fabbrizzi, M. Licchelli and D. Sacchi, Chem. Commun., 1191 (1999); doi:10.1039/a901931f.
G. Bergamini, P. Ceroni, M. Maestri, S.-K. Lee, J. van Heyst and F. Vögtle, Inorg. Chim. Acta, 360, 1043 (2007); doi:10.1016/j.ica.2006.07.084.
G. Bergamini, E. Marchi and P. Ceroni, Coord. Chem. Rev., 255, 2458 (2011); doi:10.1016/j.ccr.2011.01.022.
M. Aydınlı, M. Tutaş, B. Atasoy and Ö.A. Bozdemir, React. Funct. Polym., 65, 317 (2005); doi:10.1016/j.reactfunctpolym.2005.07.004.
M. Dilek and F. Kezer, J. Macromol. Sci. Pure Appl. Chem., 46, 591 (2009); doi:10.1080/10601320902851835.
O. Dilek, M.Sc. Thesis, University of Afyon Kocatepe, Afyonkarahisar, Turkey (2009).
I.F. Connerton, in ed.: G.W. Gould, Analysis of Membrane Proteins, Portland: London, p. 177-179 (1994).
E.C.Z. Chan, M.J. Pelczar and N.R. Krieg, Agar Diffusion Method in Laboratory Exercise in Microbiology, Mc-Graw Hill, New York, p. 225-229 (1993).
J.A. Desai, U. Dayal and P.H. Parsania, J. Macromol. Sci. Pure Appl. Chem., 33, 1113 (1996); doi:10.1080/10601329608010908.