Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A New Type of Organic Ferroelectric N-Dehydroabietyl-4-bromobenzamide
Corresponding Author(s) : Yan Sui
Asian Journal of Chemistry,
Vol. 27 No. 7 (2015): Vol 27 Issue 7, 2015
Abstract
A new organic low-molecular-mass compound N-dehydroabietyl-4-bromobenzamide (1) was synthesized using natural biomass dehydro-abietylamine and 4-bromobenzoic acid. Single crystal structure analysis revealed that compound 1 crystallized in a chiral and polar space group P21 and adjacent molecules were hold together by almost straight line N-H···O hydrogen bond chain. Compound 1 exhibits good second-order nonlinear optical and ferroelectric properties. The results indicated a new type organic ferroelectric material derived from natural biomass dehydroabietylamine.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Zhang and R.-G. Xiong, Chem. Rev., 112, 1163 (2012); doi:10.1021/cr200174w.
- N.A. Spaldin, S.-W. Cheong and R. Ramesh, Phys. Today, 63, 38 (2010); doi:10.1063/1.3502547.
- F. Scott, Science, 315, 954 (2007); doi:10.1126/science.1129564.
- A.K. Cheetham and C.N.R. Rao, Science, 318, 58 (2007); doi:10.1126/science.1147231.
- R.P. Lemieux, Acc. Chem. Res., 34, 845 (2001); doi:10.1021/ar9901164.
- A.O. Polyakov, A.H. Arkenbout, J. Baas, G.R. Blake, A. Meetsma, A. Caretta, P.H.M. van Loosdrecht and T.T.M. Palstra, Chem. Mater., 24, 133 (2012); doi:10.1021/cm2023696.
- Z.-H. Sun, J.-H. Luo, T.-L. Chen, L.-N. Li, R.-G. Xiong, M.-L. Tong and M.-C. Hong, Adv. Funct. Mater., 22, 4855 (2012); doi:10.1002/adfm.201201770.
- B.-W. Li, M. Osada, T.C. Ozawa and T. Sasaki, Chem. Mater., 24, 3111 (2012); doi:10.1021/cm3013039.
- M.-X. Yao, Q. Zheng, X.-M. Cai, Y.-Z. Li, Y. Song and J.-L. Zuo, Inorg. Chem., 51, 2140 (2012); doi:10.1021/ic201982d.
- H.-L. Cai, Y. Zhang, D.-W. Fu, W. Zhang, T. Liu, H. Yoshikawa, K. Awaga and R.-G. Xiong, J. Am. Chem. Soc., 134, 18487 (2012); doi:10.1021/ja3073319.
- D.-P. Sui, Li, C.-H. Li, X.-H. Zhou, T. Wu and X.-Z. You, Inorg. Chem., 49, 1286 (2010); doi:10.1021/ic902136f.
- S. Ohkoshi, H. Tokoro, T. Matsuda, H. Takahashi, H. Irie and K. Hashimoto, Angew. Chem. Int. Ed., 46, 3238 (2007); doi:10.1002/anie.200604452.
- S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai and Y. Tokura, Nature, 463, 789 (2010); doi:10.1038/nature08731.
- S. Horiuchi and Y. Tokura, Nat. Mater., 7, 357 (2008); doi:10.1038/nmat2137.
- R. Kumai, S. Horiuchi, H. Sagayama, T.H. Arima, M. Watanabe, Y. Noda and Y. Tokura, J. Am. Chem. Soc., 129, 12920 (2007); doi:10.1021/ja075406r.
- S. Horiuchi, R. Kumai and Y. Tokura, J. Am. Chem. Soc., 127, 5010 (2005); doi:10.1021/ja042212s.
- S. Horiuchi, R. Kumai and Y. Tokura, Chem. Commun., 21, 2321 (2007); doi:10.1039/b617881b.
- K. Noda, K. Ishida, A. Kubono, T. Horiuchi, H. Yamada and K. Matsushige, J. Appl. Phys., 93, 2866 (2003); doi:10.1063/1.1540231.
- H. Danner and R. Braun, Chem. Soc. Rev., 28, 395 (1999); doi:10.1039/a806968i.
- A. San Feliciano, M. Gordaliza, M. Salinero and J. del Corral, Planta Med., 59, 485 (1993); doi:10.1055/s-2006-959744.
- W.J. Gottstein and L.C. Cheney, J. Org. Chem., 30, 2072 (1965); doi:10.1021/jo01017a518.
- Y. Sui, D.-S. Liu, R.-H. Hu and H.-M. Chen, J. Mater. Chem., 21, 14599 (2011); doi:10.1039/c0jm03461d.
- Y. Sui, D.-P. Li, C.-H. Li, X.-H. Zhou, T. Wu and X.-Z. You, Inorg. Chem., 49, 1286 (2010); doi:10.1021/ic902136f.
- M. Szafranski, A. Katrusiak and G.J. McIntyre, Phys. Rev. Lett., 89, 215507 (2002); doi:10.1103/PhysRevLett.89.215507.
- A. Katrusiak, J. Mol. Struct., 552, 159 (2000); doi:10.1016/S0022-2860(00)00475-0.
- A. Katrusiak and M. Szafranski, Phys. Rev. Lett., 82, 576 (1999); doi:10.1103/PhysRevLett.82.576.
- M. Wojtas, A. Gagor, O. Czupinski, W. Medycki and R. Jakubas, J. Solid State Chem., 187, 35 (2012); doi:10.1016/j.jssc.2011.12.020.
- R. Pepinsky, K. Vedam, Y. Okaya and S. Hoshino, Phys. Rev., 111, 1467 (1958); doi:10.1103/PhysRev.111.1467.
- G.S. Delmar and R. Kubela, Patent US 3493613A (1970).
References
W. Zhang and R.-G. Xiong, Chem. Rev., 112, 1163 (2012); doi:10.1021/cr200174w.
N.A. Spaldin, S.-W. Cheong and R. Ramesh, Phys. Today, 63, 38 (2010); doi:10.1063/1.3502547.
F. Scott, Science, 315, 954 (2007); doi:10.1126/science.1129564.
A.K. Cheetham and C.N.R. Rao, Science, 318, 58 (2007); doi:10.1126/science.1147231.
R.P. Lemieux, Acc. Chem. Res., 34, 845 (2001); doi:10.1021/ar9901164.
A.O. Polyakov, A.H. Arkenbout, J. Baas, G.R. Blake, A. Meetsma, A. Caretta, P.H.M. van Loosdrecht and T.T.M. Palstra, Chem. Mater., 24, 133 (2012); doi:10.1021/cm2023696.
Z.-H. Sun, J.-H. Luo, T.-L. Chen, L.-N. Li, R.-G. Xiong, M.-L. Tong and M.-C. Hong, Adv. Funct. Mater., 22, 4855 (2012); doi:10.1002/adfm.201201770.
B.-W. Li, M. Osada, T.C. Ozawa and T. Sasaki, Chem. Mater., 24, 3111 (2012); doi:10.1021/cm3013039.
M.-X. Yao, Q. Zheng, X.-M. Cai, Y.-Z. Li, Y. Song and J.-L. Zuo, Inorg. Chem., 51, 2140 (2012); doi:10.1021/ic201982d.
H.-L. Cai, Y. Zhang, D.-W. Fu, W. Zhang, T. Liu, H. Yoshikawa, K. Awaga and R.-G. Xiong, J. Am. Chem. Soc., 134, 18487 (2012); doi:10.1021/ja3073319.
D.-P. Sui, Li, C.-H. Li, X.-H. Zhou, T. Wu and X.-Z. You, Inorg. Chem., 49, 1286 (2010); doi:10.1021/ic902136f.
S. Ohkoshi, H. Tokoro, T. Matsuda, H. Takahashi, H. Irie and K. Hashimoto, Angew. Chem. Int. Ed., 46, 3238 (2007); doi:10.1002/anie.200604452.
S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai and Y. Tokura, Nature, 463, 789 (2010); doi:10.1038/nature08731.
S. Horiuchi and Y. Tokura, Nat. Mater., 7, 357 (2008); doi:10.1038/nmat2137.
R. Kumai, S. Horiuchi, H. Sagayama, T.H. Arima, M. Watanabe, Y. Noda and Y. Tokura, J. Am. Chem. Soc., 129, 12920 (2007); doi:10.1021/ja075406r.
S. Horiuchi, R. Kumai and Y. Tokura, J. Am. Chem. Soc., 127, 5010 (2005); doi:10.1021/ja042212s.
S. Horiuchi, R. Kumai and Y. Tokura, Chem. Commun., 21, 2321 (2007); doi:10.1039/b617881b.
K. Noda, K. Ishida, A. Kubono, T. Horiuchi, H. Yamada and K. Matsushige, J. Appl. Phys., 93, 2866 (2003); doi:10.1063/1.1540231.
H. Danner and R. Braun, Chem. Soc. Rev., 28, 395 (1999); doi:10.1039/a806968i.
A. San Feliciano, M. Gordaliza, M. Salinero and J. del Corral, Planta Med., 59, 485 (1993); doi:10.1055/s-2006-959744.
W.J. Gottstein and L.C. Cheney, J. Org. Chem., 30, 2072 (1965); doi:10.1021/jo01017a518.
Y. Sui, D.-S. Liu, R.-H. Hu and H.-M. Chen, J. Mater. Chem., 21, 14599 (2011); doi:10.1039/c0jm03461d.
Y. Sui, D.-P. Li, C.-H. Li, X.-H. Zhou, T. Wu and X.-Z. You, Inorg. Chem., 49, 1286 (2010); doi:10.1021/ic902136f.
M. Szafranski, A. Katrusiak and G.J. McIntyre, Phys. Rev. Lett., 89, 215507 (2002); doi:10.1103/PhysRevLett.89.215507.
A. Katrusiak, J. Mol. Struct., 552, 159 (2000); doi:10.1016/S0022-2860(00)00475-0.
A. Katrusiak and M. Szafranski, Phys. Rev. Lett., 82, 576 (1999); doi:10.1103/PhysRevLett.82.576.
M. Wojtas, A. Gagor, O. Czupinski, W. Medycki and R. Jakubas, J. Solid State Chem., 187, 35 (2012); doi:10.1016/j.jssc.2011.12.020.
R. Pepinsky, K. Vedam, Y. Okaya and S. Hoshino, Phys. Rev., 111, 1467 (1958); doi:10.1103/PhysRev.111.1467.
G.S. Delmar and R. Kubela, Patent US 3493613A (1970).