Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Mixed Ligand Transition Metal(II) Complexes of Isatinimine Schiff Bases
Corresponding Author(s) : Jai Devi
Asian Journal of Chemistry,
Vol. 31 No. 1 (2019): Vol 31 Issue 1
Abstract
Transition metal complexes of cobalt(II), nickel(II), copper(II) and zinc(II) of isatinimine Schiff base ligands (HL1-HL2) derived from isatin 5-chloro-2-hydroxy aniline (HL1), 2-amino-4-nitrophenol (HL2) and heterocyclic nitrogen base 8-hydroxyquinoline have been synthesized. All the metal complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility, SEM and spectroscopic techniques (IR, UV-visible, NMR and ESR). Transition metal complexes existed as octahedral or distorted octahedral geometries around metal centres with the donation of carbonyl oxygen, azomethine nitrogen and deprotonated enolic oxygen, whereas ligand 8-hydroxyquinoline existed as monobasic bidentate ON coordinating through oxygen of hydroxyl group and nitrogen of quinoline ring. The complexes were found to be non-electrolytic in nature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.P. Tian, C.Y. Duan, C.Y. Zhao, X.Z. You, T.C.W. Mak and Z. Zhang, Inorg. Chem., 36, 1247 (1997); https://doi.org/10.1021/ic9603870.
- Y.P. Tian, C.Y. Duan, X.Z. You, T.C.W. Mak, Q. Luo and J.Y. Zhou, Transition Met. Chem., 23, 17 (1997); https://doi.org/10.1023/A:1006937413506.
- A. Abu-Raqabah, G. Davies, M.A. El-Sayed, A. El-Toukhy, S.N. Shaikh and J. Zubieta, Inorg. Chim. Acta, 193, 43 (1992); https://doi.org/10.1016/S0020-1693(00)83796-2.
- E.M. McGarrigle and D.G. Gilheany, Chem. Rev., 105, 1563 (2005); https://doi.org/10.1021/cr0306945.
- R.I. Kureshy, N.H. Khan, S.H.R. Abdi, S.T. Patel and P. Iyer, J. Mol. Catal. Chem., 150, 175 (1999); https://doi.org/10.1016/S1381-1169(99)00227-7.
- Y. Aoyama, T. Fujisawa, H. Toi and H. Ogoshi, J. Am. Chem. Soc., 108, 943 (1986); https://doi.org/10.1021/ja00265a017.
- T.R. Kelly, A. Whiting and N.S. Chandrakumar, J. Am. Chem. Soc., 108, 3510 (1986); https://doi.org/10.1021/ja00272a058.
- P. Sengupta, S. Ghosh and T.C.W. Mak, Polyhedron, 20, 975 (2001); https://doi.org/10.1016/S0277-5387(01)00736-7.
- M. Tümer, E. Akgün, S. Toroglu, A. Kayraldiz and L. Dönbak, J. Coord. Chem., 61, 2935 (2008); https://doi.org/10.1080/00958970801989902.
- A. Gölcü, M. Tümer, H. Demirelli and R.A. Wheatley, Inorg. Chim. Acta, 358, 1785 (2005); https://doi.org/10.1016/j.ica.2004.11.026.
- J. Devi, S. Devi and A. Kumar, Monatsh. Chem., 147, 2195 (2016); https://doi.org/10.1007/s00706-016-1720-z.
- C. Gerdemann, C. Eicken and B. Krebs, J. Chem. Res., 35, 183 (2002); https://doi.org/10.1021/ar990019a.
- J. Devi and N. Batra, Spectrochim. Acta A Mol. Biomol. Spectrosc., 135, 710 (2015); https://doi.org/10.1016/j.saa.2014.07.041.
- J. Devi, N. Batra and R. Malhotra, Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 397 (2012); https://doi.org/10.1016/j.saa.2012.06.026.
- J. Devi, S. Kumari and R. Malhotra, Phosphorus Sulfur Silicon Relat. Elem., 187, 587 (2012); https://doi.org/10.1080/10426507.2011.634465.
- F.A. Carey, Organic Chemistry, edn 2, McGraw-Hill: New York (1992).
- L.H. Abdel-Rahman, A.M. Abu-Dief, R.M. El-Khatib and S.M. AbdelFatah, Bioorg. Chem., 69, 140 (2016); https://doi.org/10.1016/j.bioorg.2016.10.009.
- S.K. Lee, K.W. Tan, S.W. Ng, K.K. Ooi, K.P. Ang and M.A. Abdah, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 101 (2014); https://doi.org/10.1016/j.saa.2013.10.084.
- M.M. Omar, H.F.A. El-Halim and E.A.M. Khalil, Appl. Organomet. Chem. 31, e3724 (2017); https://doi.org/10.1002/aoc.3724.
- M.A. Neelakantan, F. Rusalraj, J. Dharmaraja, S. Johnsonraja, T. Jeyakumar and M.S. Pillai, Spectrochim. Acta A Mol. Biomol. Spectrosc., 71, 1599 (2008); https://doi.org/10.1016/j.saa.2008.06.008.
- N. Raman, S. Sobha and A. Thamaraichelvan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 888 (2011); https://doi.org/10.1016/j.saa.2010.12.056.
- H. Temel, U. Cakir, B. Otludil and H.I. Ugras, Synth. React. Inorg. Met.- Org. Chem., 31, 1323 (2001); https://doi.org/10.1081/SIM-100107201.
- D. Sattari, E. Alipour, S. Shirani and J. Amighian, J. Inorg. Biochem., 45, 115 (1992); https://doi.org/10.1016/0162-0134(92)80005-G.
- B.T. Thaker, P.K. Tandel, A.S. Patel, C.J. Vyas, M.S. Jesani and D.M. Patel, Indian J. Chem., 44A, 265 (2005); 25. M.A. Diab, A.Z. El-Sonbati and R.H. Mohamed, Spectrochim. Acta A Mol. Biomol. Spectrosc., 77, 795 (2010); https://doi.org/10.1016/j.saa.2010.08.006.
References
Y.P. Tian, C.Y. Duan, C.Y. Zhao, X.Z. You, T.C.W. Mak and Z. Zhang, Inorg. Chem., 36, 1247 (1997); https://doi.org/10.1021/ic9603870.
Y.P. Tian, C.Y. Duan, X.Z. You, T.C.W. Mak, Q. Luo and J.Y. Zhou, Transition Met. Chem., 23, 17 (1997); https://doi.org/10.1023/A:1006937413506.
A. Abu-Raqabah, G. Davies, M.A. El-Sayed, A. El-Toukhy, S.N. Shaikh and J. Zubieta, Inorg. Chim. Acta, 193, 43 (1992); https://doi.org/10.1016/S0020-1693(00)83796-2.
E.M. McGarrigle and D.G. Gilheany, Chem. Rev., 105, 1563 (2005); https://doi.org/10.1021/cr0306945.
R.I. Kureshy, N.H. Khan, S.H.R. Abdi, S.T. Patel and P. Iyer, J. Mol. Catal. Chem., 150, 175 (1999); https://doi.org/10.1016/S1381-1169(99)00227-7.
Y. Aoyama, T. Fujisawa, H. Toi and H. Ogoshi, J. Am. Chem. Soc., 108, 943 (1986); https://doi.org/10.1021/ja00265a017.
T.R. Kelly, A. Whiting and N.S. Chandrakumar, J. Am. Chem. Soc., 108, 3510 (1986); https://doi.org/10.1021/ja00272a058.
P. Sengupta, S. Ghosh and T.C.W. Mak, Polyhedron, 20, 975 (2001); https://doi.org/10.1016/S0277-5387(01)00736-7.
M. Tümer, E. Akgün, S. Toroglu, A. Kayraldiz and L. Dönbak, J. Coord. Chem., 61, 2935 (2008); https://doi.org/10.1080/00958970801989902.
A. Gölcü, M. Tümer, H. Demirelli and R.A. Wheatley, Inorg. Chim. Acta, 358, 1785 (2005); https://doi.org/10.1016/j.ica.2004.11.026.
J. Devi, S. Devi and A. Kumar, Monatsh. Chem., 147, 2195 (2016); https://doi.org/10.1007/s00706-016-1720-z.
C. Gerdemann, C. Eicken and B. Krebs, J. Chem. Res., 35, 183 (2002); https://doi.org/10.1021/ar990019a.
J. Devi and N. Batra, Spectrochim. Acta A Mol. Biomol. Spectrosc., 135, 710 (2015); https://doi.org/10.1016/j.saa.2014.07.041.
J. Devi, N. Batra and R. Malhotra, Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 397 (2012); https://doi.org/10.1016/j.saa.2012.06.026.
J. Devi, S. Kumari and R. Malhotra, Phosphorus Sulfur Silicon Relat. Elem., 187, 587 (2012); https://doi.org/10.1080/10426507.2011.634465.
F.A. Carey, Organic Chemistry, edn 2, McGraw-Hill: New York (1992).
L.H. Abdel-Rahman, A.M. Abu-Dief, R.M. El-Khatib and S.M. AbdelFatah, Bioorg. Chem., 69, 140 (2016); https://doi.org/10.1016/j.bioorg.2016.10.009.
S.K. Lee, K.W. Tan, S.W. Ng, K.K. Ooi, K.P. Ang and M.A. Abdah, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 101 (2014); https://doi.org/10.1016/j.saa.2013.10.084.
M.M. Omar, H.F.A. El-Halim and E.A.M. Khalil, Appl. Organomet. Chem. 31, e3724 (2017); https://doi.org/10.1002/aoc.3724.
M.A. Neelakantan, F. Rusalraj, J. Dharmaraja, S. Johnsonraja, T. Jeyakumar and M.S. Pillai, Spectrochim. Acta A Mol. Biomol. Spectrosc., 71, 1599 (2008); https://doi.org/10.1016/j.saa.2008.06.008.
N. Raman, S. Sobha and A. Thamaraichelvan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 888 (2011); https://doi.org/10.1016/j.saa.2010.12.056.
H. Temel, U. Cakir, B. Otludil and H.I. Ugras, Synth. React. Inorg. Met.- Org. Chem., 31, 1323 (2001); https://doi.org/10.1081/SIM-100107201.
D. Sattari, E. Alipour, S. Shirani and J. Amighian, J. Inorg. Biochem., 45, 115 (1992); https://doi.org/10.1016/0162-0134(92)80005-G.
B.T. Thaker, P.K. Tandel, A.S. Patel, C.J. Vyas, M.S. Jesani and D.M. Patel, Indian J. Chem., 44A, 265 (2005); 25. M.A. Diab, A.Z. El-Sonbati and R.H. Mohamed, Spectrochim. Acta A Mol. Biomol. Spectrosc., 77, 795 (2010); https://doi.org/10.1016/j.saa.2010.08.006.