Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical Advanced Treatment of Laboratory Wastewater Using Ti/Ru Electrodes
Corresponding Author(s) : Hao Wang
Asian Journal of Chemistry,
Vol. 27 No. 6 (2015): Vol 27 Issue 6
Abstract
Electrochemical oxidation was adapted to advanced treatment laboratory wastewater. The removal effect of major pollutants of laboratory secondary effluent was mainly investigated and the main chemical reaction path of the removal of organic matter and nitrogen compounds by electrochemical method was discussed preliminarily. The results showed that, after dosing NaCl the best removal ratio of chemical oxygen demand, NH3-N, total nitrogen and total phosphorus was 84.4, 100, 90.9 and 81.2 %, respectively on the condition of different electrolysis time, constant current 5A, namely the current density 7.4 mA/cm2 and the effect was better than that without NaCl. The removal ratio of major pollutants was higher after dosing NaCl, namely they were removed faster by electrolysis in the case that other experimental conditions remained unchanged. Comprehensive consideration of power consumption suggested that the best operation condition was of definite salt concentration, constant current 5A, namely the current density 7.4 mA/cm2 and electrolysis time 0.5 h.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wang and L. Zhang, Asian J. Chem., 24, 5299 (2012).
- N. Mehrdadi, A. Rahmani, A.A. Azimi and A. Torabian, Asian J. Chem., 21, 5245 (2009).
- C.C. Tanner, J.P.S. Sukias and M.P. Upsdell, Water Res., 32, 3046 (1998); doi:10.1016/S0043-1354(98)00078-5.
- Y.F. Lin, S.R. Jing, D.Y. Lee and T.W. Wang, Aquaculture, 209, 169 (2002); doi:10.1016/S0044-8486(01)00801-8.
- J. Chang, X.H. Zhang and R. Perfler, Fresenius Environ. Bull., 16, 1082 (2007).
- G.D. Ji, T.H. Sun, Q.X. Zhou, X. Sui, S. Chang and P. Li, Ecol. Eng., 18, 459 (2002); doi:10.1016/S0925-8574(01)00106-9.
- H. Wang, D.L. Jiang, Y. Yang and G.P. Cao, Water Sci. Technol., 67, 353 (2013); doi:10.2166/wst.2012.521.
- F. Rivera, A. Warren, C.R. Curds, E. Robles, A. Gutierrez, E. Gallegos and A. Calderon, Water Sci. Technol., 35, 271 (1997); doi:10.1016/S0273-1223(97)00078-4.
- H. Wang, X.W. He, T.Q. Liu and C.H. Zhang, Fresenius Environ. Bull., 20, 2890 (2011).
- C.L. Yue, J. Chang and Y. Ge, Fresenius Environ. Bull, 17, 992 (2008).
- C.J. Richardson and S.S. Qian, Environ. Sci. Technol., 33, 1545 (1999); doi:10.1021/es980924a.
- N. Korboulewsky, R.Y. Wang and V. Baldy, Bioresour. Technol., 105, 9 (2012); doi:10.1016/j.biortech.2011.11.037.
References
H. Wang and L. Zhang, Asian J. Chem., 24, 5299 (2012).
N. Mehrdadi, A. Rahmani, A.A. Azimi and A. Torabian, Asian J. Chem., 21, 5245 (2009).
C.C. Tanner, J.P.S. Sukias and M.P. Upsdell, Water Res., 32, 3046 (1998); doi:10.1016/S0043-1354(98)00078-5.
Y.F. Lin, S.R. Jing, D.Y. Lee and T.W. Wang, Aquaculture, 209, 169 (2002); doi:10.1016/S0044-8486(01)00801-8.
J. Chang, X.H. Zhang and R. Perfler, Fresenius Environ. Bull., 16, 1082 (2007).
G.D. Ji, T.H. Sun, Q.X. Zhou, X. Sui, S. Chang and P. Li, Ecol. Eng., 18, 459 (2002); doi:10.1016/S0925-8574(01)00106-9.
H. Wang, D.L. Jiang, Y. Yang and G.P. Cao, Water Sci. Technol., 67, 353 (2013); doi:10.2166/wst.2012.521.
F. Rivera, A. Warren, C.R. Curds, E. Robles, A. Gutierrez, E. Gallegos and A. Calderon, Water Sci. Technol., 35, 271 (1997); doi:10.1016/S0273-1223(97)00078-4.
H. Wang, X.W. He, T.Q. Liu and C.H. Zhang, Fresenius Environ. Bull., 20, 2890 (2011).
C.L. Yue, J. Chang and Y. Ge, Fresenius Environ. Bull, 17, 992 (2008).
C.J. Richardson and S.S. Qian, Environ. Sci. Technol., 33, 1545 (1999); doi:10.1021/es980924a.
N. Korboulewsky, R.Y. Wang and V. Baldy, Bioresour. Technol., 105, 9 (2012); doi:10.1016/j.biortech.2011.11.037.