Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effects of Liquid-to-Solid Ratio and Reaction Time on Dilute Sulfuric Acid Pretreatment of Achnatherum splendens
Corresponding Author(s) : J. Ren
Asian Journal of Chemistry,
Vol. 27 No. 6 (2015): Vol 27 Issue 6
Abstract
In sulfuric acid pretreatment of Achnatherum splendens, the ground biomass was pretreated by 0.5-3 % (w/v) sulfuric acid with 8:1-20:1 (v/w) of liquid-to-solid ratio at 100 °C for 1-4 h. Increasing sulfuric acid concentration, liquid-to-solid ratio and reaction time had significant effects on hemicellulose solubilization. Increasing the sulfuric acid concentration, liquid-to-solid ratio and reaction time caused significant decrease in hemicellulose and significant increase in formation of cellulose and lignin. The optimum treatment conditions of sulfuric acid pretreatment for Achnatherum splendens were 2 % (w/v) sulfuric acid, 15:1(v/w) of liquid-to-solid ratio, 3 h of reaction time and temperature 100 °C. Under these conditions, 92.57 % hemicellulose was solubilized and the content of cellulose in pretreated solids increased to 66.79 %. This study can serve as a step towards the optimization of pretreatment of Achnatherum splendens.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Palmarola-Adrados, M. Galbe and G. Zacchi, J. Chem. Technol. Biotechnol., 80, 85 (2005); doi:10.1002/jctb.1161.
- L.S. Yan, H.M. Zhang, J.W. Chen, Z.X. Lin, Q. Jin, H.H. Jia and H. Huang, Bioresour. Technol., 100, 1803 (2009); doi:10.1016/j.biortech.2008.10.001.
- G.L. Guo, W.H. Chen, W.H. Chen, L.C. Men and W.S. Hwang, Bioresour. Technol., 99, 6046 (2008); doi:10.1016/j.biortech.2007.12.047.
- S.S. Silva, Z.R. Matos and W. Carvalho, Biotechnol. Prog., 21, 1449 (2005); doi:10.1021/bp0502025.
- T.A. Lloyd and C.E. Wyman, Bioresour. Technol., 96, 1967 (2005); doi:10.1016/j.biortech.2005.01.011.
- S.B. Kim and Y.Y. Lee, Bioresour. Technol., 83, 165 (2002); doi:10.1016/S0960-8524(01)00197-3.
- X.B. Zhao, F. Peng, K.K. Cheng and D.H. Liu, Enzyme Microb. Technol., 44, 17 (2009); doi:10.1016/j.enzmictec.2008.07.011.
- R.A. Silverstein, Y. Chen, R.R. Sharma-Shivappa, M. Boyette and J.A. Osborne, Bioresour. Technol., 98, 3000 (2007); doi:10.1016/j.biortech.2006.10.022.
- C. Martín, H.B. Klinke and A.B. Thomsen, Enzyme Microb. Technol., 40, 426 (2007); doi:10.1016/j.enzmictec.2006.07.015.
- C. Martin and A.B. Thomsen, J. Chem. Technol. Biotechnol., 82, 174 (2007); doi:10.1002/jctb.1648.
- S.H. Yat, A. Berger and D.R. Shonnard, Bioresour. Technol., 99, 3855 (2008); doi:10.1016/j.biortech.2007.06.046.
- I. Ballesteros, M. Ballesteros, P. Manzanares, M.J. Negro, J.M. Oliva and F. Sáez, Biochem. Eng. J., 42, 84 (2008); doi:10.1016/j.bej.2008.06.001.
- I.S. Goldstein and J.M. Easter, TAPPI J., 75, 135 (1992).
- C.J. Israilides, G.A. Grant and Y.W. Han, Appl. Environ. Microbiol., 36, 43 (1978).
- D.J. Schell, J. Farmer, M. Newman and J.D. McMillan, Appl. Biochem. Biotechnol., 105, 69 (2003); doi:10.1385/ABAB:105:1-3:69.
- R. Torget, P. Walter, M. Himmel and K. Grohmann, Appl. Biochem. Biotechnol., 28-29, 75 (1991); doi:10.1007/BF02922590.
- K. Karimi, G. Emtiazi and M.J. Taherzadeh, Enzyme Microb. Technol., 40, 138 (2006); doi:10.1016/j.enzmictec.2005.10.046.
- Y. Sun and J.J. Cheng, Bioresour. Technol., 96, 1599 (2005); doi:10.1016/j.biortech.2004.12.022.
- X.B. Zhao, L.H. Zhang and D.H. Liu, Bioresour. Technol., 99, 3729 (2008); doi:10.1016/j.biortech.2007.07.016.
- H.K. Goering and P.J. Vansoest, Agricultural Research Services, United States Department of Agriculture, No. 379 (1970).
References
B. Palmarola-Adrados, M. Galbe and G. Zacchi, J. Chem. Technol. Biotechnol., 80, 85 (2005); doi:10.1002/jctb.1161.
L.S. Yan, H.M. Zhang, J.W. Chen, Z.X. Lin, Q. Jin, H.H. Jia and H. Huang, Bioresour. Technol., 100, 1803 (2009); doi:10.1016/j.biortech.2008.10.001.
G.L. Guo, W.H. Chen, W.H. Chen, L.C. Men and W.S. Hwang, Bioresour. Technol., 99, 6046 (2008); doi:10.1016/j.biortech.2007.12.047.
S.S. Silva, Z.R. Matos and W. Carvalho, Biotechnol. Prog., 21, 1449 (2005); doi:10.1021/bp0502025.
T.A. Lloyd and C.E. Wyman, Bioresour. Technol., 96, 1967 (2005); doi:10.1016/j.biortech.2005.01.011.
S.B. Kim and Y.Y. Lee, Bioresour. Technol., 83, 165 (2002); doi:10.1016/S0960-8524(01)00197-3.
X.B. Zhao, F. Peng, K.K. Cheng and D.H. Liu, Enzyme Microb. Technol., 44, 17 (2009); doi:10.1016/j.enzmictec.2008.07.011.
R.A. Silverstein, Y. Chen, R.R. Sharma-Shivappa, M. Boyette and J.A. Osborne, Bioresour. Technol., 98, 3000 (2007); doi:10.1016/j.biortech.2006.10.022.
C. Martín, H.B. Klinke and A.B. Thomsen, Enzyme Microb. Technol., 40, 426 (2007); doi:10.1016/j.enzmictec.2006.07.015.
C. Martin and A.B. Thomsen, J. Chem. Technol. Biotechnol., 82, 174 (2007); doi:10.1002/jctb.1648.
S.H. Yat, A. Berger and D.R. Shonnard, Bioresour. Technol., 99, 3855 (2008); doi:10.1016/j.biortech.2007.06.046.
I. Ballesteros, M. Ballesteros, P. Manzanares, M.J. Negro, J.M. Oliva and F. Sáez, Biochem. Eng. J., 42, 84 (2008); doi:10.1016/j.bej.2008.06.001.
I.S. Goldstein and J.M. Easter, TAPPI J., 75, 135 (1992).
C.J. Israilides, G.A. Grant and Y.W. Han, Appl. Environ. Microbiol., 36, 43 (1978).
D.J. Schell, J. Farmer, M. Newman and J.D. McMillan, Appl. Biochem. Biotechnol., 105, 69 (2003); doi:10.1385/ABAB:105:1-3:69.
R. Torget, P. Walter, M. Himmel and K. Grohmann, Appl. Biochem. Biotechnol., 28-29, 75 (1991); doi:10.1007/BF02922590.
K. Karimi, G. Emtiazi and M.J. Taherzadeh, Enzyme Microb. Technol., 40, 138 (2006); doi:10.1016/j.enzmictec.2005.10.046.
Y. Sun and J.J. Cheng, Bioresour. Technol., 96, 1599 (2005); doi:10.1016/j.biortech.2004.12.022.
X.B. Zhao, L.H. Zhang and D.H. Liu, Bioresour. Technol., 99, 3729 (2008); doi:10.1016/j.biortech.2007.07.016.
H.K. Goering and P.J. Vansoest, Agricultural Research Services, United States Department of Agriculture, No. 379 (1970).