Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electroosmosis-Driven Polystyrene Particles Transport Across Polymer Membrane Containing a Conical-Shaped Nanopore
Corresponding Author(s) : X.R. Zhu
Asian Journal of Chemistry,
Vol. 27 No. 6 (2015): Vol 27 Issue 6
Abstract
This report presents a study of translocation of the charged polystyrene nanoparticles across two nanopores separately (a double conical-shaped and a single conical-shaped) contained within a polyimide (Kapton) film using the coulter Counter principle (or “resistive-pulse” method) in which the time-dependent current is recorded as the nanoparticle is driven across the membrane. The nanopores were fabricated by the track-etched method. Under the action of the electroosmotic, the particles transports across the nanopore and results in a direction-dependent and asymmetric triangular-shaped resistive pulse. When applied voltage was low, the transportation current decreased. With the increasing of the voltage, the transmembrane current decreased and increase alternately, the increase of current was less and the decrease of current was more. At higher voltage the current decreased. We contribute these to the change of the electroosmotic flow.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.R. Martin and Z.S. Siwy, Science, 317, 331 (2007); doi:10.1126/science.1146126.
- L. Ionov, N. Houbenov, A. Sidorenko, M. Stamm and S. Minko, Adv. Funct. Mater., 16, 1153 (2006); doi:10.1002/adfm.200500562.
- J. Lahann, S. Mitragotri, T.-N. Tran, H. Kaido, J. Sundaram, I.S. Choi, S. Hoffer, G.A. Somorjai and R. Langer, Science, 299, 371 (2003); doi:10.1126/science.1078933.
- D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krstic, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin and J.A. Schloss, Nat. Biotechnol., 26, 1146 (2008); doi:10.1038/nbt.1495.
- H. Bayley and C.R. Martin, Chem. Rev., 100, 2575 (2000); doi:10.1021/cr980099g.
- C. Ho, R. Qiao, J.B. Heng, A. Chatterjee, R.J. Timp, N.R. Aluru and G. Timp, Proc. Natl. Acad. Sci. USA, 102, 10445 (2005); doi:10.1073/pnas.0500796102.
- S. Yu, S.B. Lee and C.R. Martin, Anal. Chem., 75, 1239 (2003); doi:10.1021/ac020711a.
- J.E. Reiner, J.J. Kasianowicz, B.J. Nablo and J.W.F. Robertson, Proc. Natl. Acad. Sci. USA, 107, 12080 (2010); doi:10.1073/pnas.1002194107.
- R.W. DeBlois and R.K. Wesley, J. Virol., 23, 227 (1977).
- (a) O.A. Saleh and L.L. Sohn, Rev. Sci. Instrum., 72, 4449 (2001); doi:10.1063/1.1419224; (b) O.A. Saleh and L.L. Sohn, Proc. Natl. Acad. Sci. USA, 100, 820 (2003); doi:10.1073/pnas.0337563100.
- L. Petrossian, S.J. Wilk, P. Joshi, S.M. Goodnick and T.J. Thornton, J. Phys. Conf. Ser., 109, 012028 (2008); doi:10.1088/1742-6596/109/1/012028.
- B. Zhang, M. Wood and H. Lee, Anal. Chem., 81, 5541 (2009); doi:10.1021/ac9009148.
- W.J. Lan, D.A. Holden, J. Liu and H.S. White, J. Phys. Chem. C, 115, 18445 (2011); doi:10.1021/jp204839j.
- D.A. Holden, G. Hendrickson, L.A. Lyon and H.S. White, J. Phys. Chem. C, 115, 2999 (2011); doi:10.1021/jp111244v.
- T. James, Y.V. Kalinin, C.C. Chan, J.S. Randhawa, M. Gaevski and D.H. Gracias, Nano Lett., 12, 3437 (2012); doi:10.1021/nl300673r.
- M.M. Figueiredo, in ed.: R.A. Meyers, Encyclopedia of Analytical Chemistry, John Wiley & Sons, New York (2000).
References
C.R. Martin and Z.S. Siwy, Science, 317, 331 (2007); doi:10.1126/science.1146126.
L. Ionov, N. Houbenov, A. Sidorenko, M. Stamm and S. Minko, Adv. Funct. Mater., 16, 1153 (2006); doi:10.1002/adfm.200500562.
J. Lahann, S. Mitragotri, T.-N. Tran, H. Kaido, J. Sundaram, I.S. Choi, S. Hoffer, G.A. Somorjai and R. Langer, Science, 299, 371 (2003); doi:10.1126/science.1078933.
D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krstic, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin and J.A. Schloss, Nat. Biotechnol., 26, 1146 (2008); doi:10.1038/nbt.1495.
H. Bayley and C.R. Martin, Chem. Rev., 100, 2575 (2000); doi:10.1021/cr980099g.
C. Ho, R. Qiao, J.B. Heng, A. Chatterjee, R.J. Timp, N.R. Aluru and G. Timp, Proc. Natl. Acad. Sci. USA, 102, 10445 (2005); doi:10.1073/pnas.0500796102.
S. Yu, S.B. Lee and C.R. Martin, Anal. Chem., 75, 1239 (2003); doi:10.1021/ac020711a.
J.E. Reiner, J.J. Kasianowicz, B.J. Nablo and J.W.F. Robertson, Proc. Natl. Acad. Sci. USA, 107, 12080 (2010); doi:10.1073/pnas.1002194107.
R.W. DeBlois and R.K. Wesley, J. Virol., 23, 227 (1977).
(a) O.A. Saleh and L.L. Sohn, Rev. Sci. Instrum., 72, 4449 (2001); doi:10.1063/1.1419224; (b) O.A. Saleh and L.L. Sohn, Proc. Natl. Acad. Sci. USA, 100, 820 (2003); doi:10.1073/pnas.0337563100.
L. Petrossian, S.J. Wilk, P. Joshi, S.M. Goodnick and T.J. Thornton, J. Phys. Conf. Ser., 109, 012028 (2008); doi:10.1088/1742-6596/109/1/012028.
B. Zhang, M. Wood and H. Lee, Anal. Chem., 81, 5541 (2009); doi:10.1021/ac9009148.
W.J. Lan, D.A. Holden, J. Liu and H.S. White, J. Phys. Chem. C, 115, 18445 (2011); doi:10.1021/jp204839j.
D.A. Holden, G. Hendrickson, L.A. Lyon and H.S. White, J. Phys. Chem. C, 115, 2999 (2011); doi:10.1021/jp111244v.
T. James, Y.V. Kalinin, C.C. Chan, J.S. Randhawa, M. Gaevski and D.H. Gracias, Nano Lett., 12, 3437 (2012); doi:10.1021/nl300673r.
M.M. Figueiredo, in ed.: R.A. Meyers, Encyclopedia of Analytical Chemistry, John Wiley & Sons, New York (2000).