Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Oxidative Cleavage of DNA by Transition Metal Complexes: Synthesis, Spectral Characterization and DNA Interactions of Copper(II) Complexes with Quinquedentate Schiff Base Ligands
Corresponding Author(s) : M. Pragathi
Asian Journal of Chemistry,
Vol. 31 No. 1 (2019): Vol 31 Issue 1
Abstract
Designing of dinucleating ligands, with an additional donor atom that can bridge two metals in a more or less fixed geometry has rapidly developed in recent years. Part of the interest stems from the fact that the corresponding complexes are often studied as enzyme mimics. Two quinquedentate ligands have been synthesized by condensing salicylaldehyde/o-hydroxy- acetophenone with 2-hydroxy-1,3- propanediamine. The ligands and their metal complexes are synthesized and characterized by physicochemical and spectral analysis. Electrochemical behaviour of the complexes is investigated through cyclic voltammetric studies. E1/2 values are observed at 0.360 and 0.331 V vs. Ag/AgCl for the complexes. The non-equivalent current in cathodic and anodic peaks (ic/ia = 1.224 and 1.065 at 100 mV s-1) for metal complexes indicate quasi-reversible behaviour. Binding interactions of the dinuclear copper(II) complexes with calf thymus DNA are investigated using absorption spectrophotometry. Cleavage activities of these complexes are uncovered on a double stranded pBR plasmid DNA by using gel electrophoresis experiments in different conditions. At micromolar concentration, the ligands exhibit no significant activity, whereas the metal complexes show significantly enhanced nuclease activity due to the presence of metal ions. Copper complexes cleave DNA more effectively in the presence of oxidant. This is consistent with the increased production of hydroxyl radicals by cuprous ions similar to the well known “Fenton reaction”.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.S. Sigman, A. Mazumder and D.M. Perrin, Chem. Rev., 93, 2295 (1993); https://doi.org/10.1021/cr00022a011.
- I. Saito and K. Nakatani, Bull. Chem. Soc. Jpn., 69, 3007 (1996); https://doi.org/10.1246/bcsj.69.3007.
- S. Mahadevan and M. Palaniandavar, Inorg. Chem., 37, 693 (1998); https://doi.org/10.1021/ic961066r.
- S. Borah, M.S. Melvin, N. Lindquist and R.A. Manderville, J. Am. Chem. Soc., 120, 4557 (1998); https://doi.org/10.1021/ja9729746.
- J.A. Cowan, Curr. Opin. Chem. Biol., 5, 634 (2001); https://doi.org/10.1016/S1367-5931(01)00259-9.
- J.R. Morrow and O. Iranzo, Curr. Opin. Chem. Biol., 8, 192 (2004); https://doi.org/10.1016/j.cbpa.2004.02.006.
- F. Mancin, P. Scrimin, P. Tecilla and U. Tonellato, Chem. Commun., 20, 2540 (2005); https://doi.org/10.1039/b418164f.
- E.L. Hegg and J.N. Burstyn, Coord. Chem. Rev., 173, 133 (1998); https://doi.org/10.1016/S0010-8545(98)00157-X.
- P.R. Reddy, N. Raju, K.S. Rao and A. Shilpa, Indian J. Chem., 48A, 761 (2009).
- S. Yamada, Coord. Chem. Rev., 190-192, 537 (1999); https://doi.org/10.1016/S0010-8545(99)00099-5.
- P. Jain and K.K. Chaturvedi, J. Inorg. Nucl. Chem., 39, 901 (1977); https://doi.org/10.1016/0022-1902(77)80182-6.
- R.D. Archer and B. Wang, Inorg. Chem., 29, 39 (1990); https://doi.org/10.1021/ic00326a009.
- D.E. Fenton and H. Okawa, J. Chem. Soc., Dalton Trans., 9, 1349 (1993); https://doi.org/10.1039/DT9930001349.
- S. Chang, L.R. Jones, C. Wang, L.M. Henling and R.H. Grubbs, Organometallics, 17, 3460 (1998); https://doi.org/10.1021/om970910y.
- Y. Nishida and S. Kida, J. Chem. Soc., Dalton Trans., 12, 2633 (1986); https://doi.org/10.1039/dt9860002633.
- T.N. Sorrell, Tetrahedron, 45, 3 (1989); https://doi.org/10.1016/0040-4020(89)80033-X.
- N. Kitajima and Y. Moro-oka, Chem. Rev., 94, 737 (1994); https://doi.org/10.1021/cr00027a010.
- Q.L. Zhang, B.X. Zhu, L.F. Lindoy and G. Wei, Inorg. Chem. Commun., 11, 678 (2008); https://doi.org/10.1016/j.inoche.2008.03.006.
- Y. Elerman, H. Kara and A. Elmali, Z. Naturforsch, 58a, 363 (2003).
- K. Hussain Reddy, P. Sambasiva Reddy and P.R. Babu, Transition Met. Chem., 25, 154 (2000); https://doi.org/10.1023/A:1007027011216.
- M.S.S. Babu, K.H. Reddy and P.G. Krishna, Polyhedron, 26, 572 (2007); https://doi.org/10.1016/j.poly.2006.08.026.
- P. Murali Krishna, K. Hussain Reddy, J.P. Pandey and D. Siddavattam, Transition Met. Chem., 33, 661 (2008); https://doi.org/10.1007/s11243-008-9094-7.
- P. Haribabu, Y.P. Patil, K.H. Reddy and M. Nethaji, Transition Metal Chem., 36, 867 (2011); https://doi.org/10.1007/s11243-011-9543-6.
- K. Hussain Reddy, M.S. Surendra Babu, S.S. Babu and S. Dayananda, Indian J. Chem., 43A, 1233 (2004).
- P. Hari Babu and K. Hussain Reddy, Indian J. Chem., 50A, 996 (2011).
- K.H. Reddy, P.S. Reddy and P.R. Babu, Inorg. Biochem., 21, 169 (1999); https://doi.org/10.1016/S0162-0134(99)00188-9.
- K.H. Reddy, P.S. Reddy and P.R. Babu, Transition Met. Chem., 25, 505 (2000); https://doi.org/10.1023/A:1007038514536.
- H. Pagonda, P.P. Yogesh, H.R. Katreddi and N. Munirathinam, Inorg. Chim. Acta, 392, 478 (2012); https://doi.org/10.1016/j.ica.2012.03.042.
- P. Hari Babu, Y. Patil, K.H. Reddy and M. Nethaji, Indian J. Chem., 52A, 327 (2013).
- M. Pragathi and K. Hussain Reddy, Indian J. Chem., 52A, 845 (2013).
- M. Pragathi and K. Hussain Reddy, Inorg. Chim. Acta, 413, 174 (2014); https://doi.org/10.1016/j.ica.2014.01.010.
- W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0.
- S. Anbu and M. Kandaswamy, Polyhedron, 30, 123 (2011); https://doi.org/10.1016/j.poly.2010.09.041.
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, edn. 2 (1984).
- K.H. Reddy and Y. Lingappa, Transition Met. Chem., 19, 487 (1994); https://doi.org/10.1007/BF00136356.
- S.K. Sahni, S.K. Sangal, S.P. Gupta and V.B. Rana, J. Inorg. Nucl. Chem., 39, 1098 (1977); https://doi.org/10.1016/0022-1902(77)80280-7.
- N. Tirumavalavan, S.M. Rayappan, P. Akilan and M. Kandaswamy, Indian J. Chem. Technol., 11, 29 (2004).
- S.G. Teoh, G.Y. Yeap, C.C. Loh, L.W. Foong, B. Teo and H.K. Fun, Polyhedron, 16, 2213 (1997); https://doi.org/10.1016/S0277-5387(96)00546-3.
- G.B. Deacon and R.J. Philips, Coord. Chem. Rev., 33, 227 (1980); https://doi.org/10.1016/S0010-8545(00)80455-5.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley Interscience: New York (1978).
- D. Kivelson and R. Neiman, J. Chem. Phys., 35, 149 (1961); https://doi.org/10.1063/1.1731880.
- N. Raman, A. Kulandaisamy and K. Jeyasubramanian, Indian J. Chem., 41A, 942 (2002).
- S.M. Mamdoush, S.A. Abou El Enein, H.M. Kamel, Indian J. Chem., 41A, 297 (2002).
- V. Philip, V. Suni, M.R.P. Kurup and M. Nethaji, Polyhedron, 24, 1133 (2005); https://doi.org/10.1016/j.poly.2005.03.064.
- B. Singh, B.P. Yadava and R.C. Agarwal, Indian J. Chem., 23A, 441 (1984).
- B.J. Hathaway and A.A.G. Tomlinson, Coord. Chem. Rev., 5, 1 (1970); https://doi.org/10.1016/S0010-8545(00)80073-9.
- A.H. Maki and B.R. McGarvey, J. Chem. Phys., 29, 31 (1958); https://doi.org/10.1063/1.1744456.
- B.J. Hathaway and D.E. Billing, Coord. Chem. Rev., 5, 143 (1970); https://doi.org/10.1016/S0010-8545(00)80135-6.
- B.J. Hathaway, J. Struct. Bonding, 14, 49 (1971); https://doi.org/10.1007/BFb0016871.
- E.B. Seena and M.R.P. Kurup, Polyhedron, 26, 829 (2007); https://doi.org/10.1016/j.poly.2006.09.040.
- A.S. Kumbhar, S.B. Padhye, D.X. West and A.E. Liberta, Transition Metal Chem., 16, 276 (1991); https://doi.org/10.1007/BF01032852.
- S. Usha and M. Palaniandavar, J. Chem. Soc., Dalton Trans., 2277 (1994); https://doi.org/10.1039/DT9940002277.
- P. Muralikrishna, Ph.D. Thesis, Investigations on Nuclease Activity of Metal Complexes of Ligands Derived from the Constituents of Some Indian Spices, S.K. University, Anantapur, India (2007).
- A. Hangan, A. Bodoki, L. Oprean, G. Alzuet, M. Liu-González and J. Borrás, Polyhedron, 29, 1305 (2010); https://doi.org/10.1016/j.poly.2009.12.030.
References
D.S. Sigman, A. Mazumder and D.M. Perrin, Chem. Rev., 93, 2295 (1993); https://doi.org/10.1021/cr00022a011.
I. Saito and K. Nakatani, Bull. Chem. Soc. Jpn., 69, 3007 (1996); https://doi.org/10.1246/bcsj.69.3007.
S. Mahadevan and M. Palaniandavar, Inorg. Chem., 37, 693 (1998); https://doi.org/10.1021/ic961066r.
S. Borah, M.S. Melvin, N. Lindquist and R.A. Manderville, J. Am. Chem. Soc., 120, 4557 (1998); https://doi.org/10.1021/ja9729746.
J.A. Cowan, Curr. Opin. Chem. Biol., 5, 634 (2001); https://doi.org/10.1016/S1367-5931(01)00259-9.
J.R. Morrow and O. Iranzo, Curr. Opin. Chem. Biol., 8, 192 (2004); https://doi.org/10.1016/j.cbpa.2004.02.006.
F. Mancin, P. Scrimin, P. Tecilla and U. Tonellato, Chem. Commun., 20, 2540 (2005); https://doi.org/10.1039/b418164f.
E.L. Hegg and J.N. Burstyn, Coord. Chem. Rev., 173, 133 (1998); https://doi.org/10.1016/S0010-8545(98)00157-X.
P.R. Reddy, N. Raju, K.S. Rao and A. Shilpa, Indian J. Chem., 48A, 761 (2009).
S. Yamada, Coord. Chem. Rev., 190-192, 537 (1999); https://doi.org/10.1016/S0010-8545(99)00099-5.
P. Jain and K.K. Chaturvedi, J. Inorg. Nucl. Chem., 39, 901 (1977); https://doi.org/10.1016/0022-1902(77)80182-6.
R.D. Archer and B. Wang, Inorg. Chem., 29, 39 (1990); https://doi.org/10.1021/ic00326a009.
D.E. Fenton and H. Okawa, J. Chem. Soc., Dalton Trans., 9, 1349 (1993); https://doi.org/10.1039/DT9930001349.
S. Chang, L.R. Jones, C. Wang, L.M. Henling and R.H. Grubbs, Organometallics, 17, 3460 (1998); https://doi.org/10.1021/om970910y.
Y. Nishida and S. Kida, J. Chem. Soc., Dalton Trans., 12, 2633 (1986); https://doi.org/10.1039/dt9860002633.
T.N. Sorrell, Tetrahedron, 45, 3 (1989); https://doi.org/10.1016/0040-4020(89)80033-X.
N. Kitajima and Y. Moro-oka, Chem. Rev., 94, 737 (1994); https://doi.org/10.1021/cr00027a010.
Q.L. Zhang, B.X. Zhu, L.F. Lindoy and G. Wei, Inorg. Chem. Commun., 11, 678 (2008); https://doi.org/10.1016/j.inoche.2008.03.006.
Y. Elerman, H. Kara and A. Elmali, Z. Naturforsch, 58a, 363 (2003).
K. Hussain Reddy, P. Sambasiva Reddy and P.R. Babu, Transition Met. Chem., 25, 154 (2000); https://doi.org/10.1023/A:1007027011216.
M.S.S. Babu, K.H. Reddy and P.G. Krishna, Polyhedron, 26, 572 (2007); https://doi.org/10.1016/j.poly.2006.08.026.
P. Murali Krishna, K. Hussain Reddy, J.P. Pandey and D. Siddavattam, Transition Met. Chem., 33, 661 (2008); https://doi.org/10.1007/s11243-008-9094-7.
P. Haribabu, Y.P. Patil, K.H. Reddy and M. Nethaji, Transition Metal Chem., 36, 867 (2011); https://doi.org/10.1007/s11243-011-9543-6.
K. Hussain Reddy, M.S. Surendra Babu, S.S. Babu and S. Dayananda, Indian J. Chem., 43A, 1233 (2004).
P. Hari Babu and K. Hussain Reddy, Indian J. Chem., 50A, 996 (2011).
K.H. Reddy, P.S. Reddy and P.R. Babu, Inorg. Biochem., 21, 169 (1999); https://doi.org/10.1016/S0162-0134(99)00188-9.
K.H. Reddy, P.S. Reddy and P.R. Babu, Transition Met. Chem., 25, 505 (2000); https://doi.org/10.1023/A:1007038514536.
H. Pagonda, P.P. Yogesh, H.R. Katreddi and N. Munirathinam, Inorg. Chim. Acta, 392, 478 (2012); https://doi.org/10.1016/j.ica.2012.03.042.
P. Hari Babu, Y. Patil, K.H. Reddy and M. Nethaji, Indian J. Chem., 52A, 327 (2013).
M. Pragathi and K. Hussain Reddy, Indian J. Chem., 52A, 845 (2013).
M. Pragathi and K. Hussain Reddy, Inorg. Chim. Acta, 413, 174 (2014); https://doi.org/10.1016/j.ica.2014.01.010.
W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0.
S. Anbu and M. Kandaswamy, Polyhedron, 30, 123 (2011); https://doi.org/10.1016/j.poly.2010.09.041.
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, edn. 2 (1984).
K.H. Reddy and Y. Lingappa, Transition Met. Chem., 19, 487 (1994); https://doi.org/10.1007/BF00136356.
S.K. Sahni, S.K. Sangal, S.P. Gupta and V.B. Rana, J. Inorg. Nucl. Chem., 39, 1098 (1977); https://doi.org/10.1016/0022-1902(77)80280-7.
N. Tirumavalavan, S.M. Rayappan, P. Akilan and M. Kandaswamy, Indian J. Chem. Technol., 11, 29 (2004).
S.G. Teoh, G.Y. Yeap, C.C. Loh, L.W. Foong, B. Teo and H.K. Fun, Polyhedron, 16, 2213 (1997); https://doi.org/10.1016/S0277-5387(96)00546-3.
G.B. Deacon and R.J. Philips, Coord. Chem. Rev., 33, 227 (1980); https://doi.org/10.1016/S0010-8545(00)80455-5.
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley Interscience: New York (1978).
D. Kivelson and R. Neiman, J. Chem. Phys., 35, 149 (1961); https://doi.org/10.1063/1.1731880.
N. Raman, A. Kulandaisamy and K. Jeyasubramanian, Indian J. Chem., 41A, 942 (2002).
S.M. Mamdoush, S.A. Abou El Enein, H.M. Kamel, Indian J. Chem., 41A, 297 (2002).
V. Philip, V. Suni, M.R.P. Kurup and M. Nethaji, Polyhedron, 24, 1133 (2005); https://doi.org/10.1016/j.poly.2005.03.064.
B. Singh, B.P. Yadava and R.C. Agarwal, Indian J. Chem., 23A, 441 (1984).
B.J. Hathaway and A.A.G. Tomlinson, Coord. Chem. Rev., 5, 1 (1970); https://doi.org/10.1016/S0010-8545(00)80073-9.
A.H. Maki and B.R. McGarvey, J. Chem. Phys., 29, 31 (1958); https://doi.org/10.1063/1.1744456.
B.J. Hathaway and D.E. Billing, Coord. Chem. Rev., 5, 143 (1970); https://doi.org/10.1016/S0010-8545(00)80135-6.
B.J. Hathaway, J. Struct. Bonding, 14, 49 (1971); https://doi.org/10.1007/BFb0016871.
E.B. Seena and M.R.P. Kurup, Polyhedron, 26, 829 (2007); https://doi.org/10.1016/j.poly.2006.09.040.
A.S. Kumbhar, S.B. Padhye, D.X. West and A.E. Liberta, Transition Metal Chem., 16, 276 (1991); https://doi.org/10.1007/BF01032852.
S. Usha and M. Palaniandavar, J. Chem. Soc., Dalton Trans., 2277 (1994); https://doi.org/10.1039/DT9940002277.
P. Muralikrishna, Ph.D. Thesis, Investigations on Nuclease Activity of Metal Complexes of Ligands Derived from the Constituents of Some Indian Spices, S.K. University, Anantapur, India (2007).
A. Hangan, A. Bodoki, L. Oprean, G. Alzuet, M. Liu-González and J. Borrás, Polyhedron, 29, 1305 (2010); https://doi.org/10.1016/j.poly.2009.12.030.