Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Surface Initiated ATRP of Acrylic Acid and Acrylamide on Cellulose Acetate Fiber
Corresponding Author(s) : Yongkuan Chen
Asian Journal of Chemistry,
Vol. 27 No. 5 (2015): Vol 27 Issue 5
Abstract
Using surface initiated atom transfer radical polymerization (ATRP) as grafting method, acrylic acid and acrylamide grafting onto cellulose acetate fiber were successfully carried out. The chemical structures and molecular weights of copolymers were characterized by XPS, 1H NMR and FTIR. The thermal stabilities and topography of copolymers were investigated by TGA and SEM. The kinetics study revealed an approximately linear increase in the graft yield of the poly(acrylic acid) and polyacrylamide with polymerization concentration, indicating that chain growth from the fiber surface was consistent with a controlled process.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Aoki, Y. Teramoto and Y. Nishio, Biomacromolecules, 8, 3749 (2007); doi:10.1021/bm7006828.
- M. Bertoldo, G. Zampano, F.L. Terra, V. Villari and V. Castelvetro, Biomacromolecules, 12, 388 (2011); doi:10.1021/bm101143q.
- Y. Cao, J. Wu, T. Meng, J. Zhang, J. He, H. Li and Y. Zhang, Carbohydr. Polym., 69, 665 (2007); doi:10.1016/j.carbpol.2007.02.001.
- Y. Cao, H. Li and J. Zhang, Ind. Eng. Chem. Res., 50, 7808 (2011); doi:10.1021/ie2004362.
- W.J. Deng, X.P. Zhuang, K.T. Guan and B.W. Cheng, Adv. Mater. Res., 221, 85 (2011); doi:10.4028/www.scientific.net/AMR.221.85.
- G.A. El Seoud, G.A. Marson, G.T. Ciacco and E. Frollini, Macromol. Chem. Phys., 201, 882 (2000); doi:10.1002/(SICI)1521-3935(20000501)201:8<882::AID-MACP882>3.0.CO;2-I.
- Y. Enomoto-Rogers, H. Kamitakahara, T. Takano and F. Nakatsubo, Biomacromolecules, 10, 2110 (2009); doi:10.1021/bm900229g.
- S.C. Fox, B. Li, D. Xu and K.J. Edgar, Biomacromolecules, 12, 1956 (2011); doi:10.1021/bm200260d.
- K.C. Gupta, S. Sahoo and K. Khandekar, Biomacromolecules, 3, 1087 (2002); doi:10.1021/bm020060s.
- Y. Luan, J. Wu, M. Zhan, J. Zhang, J. Zhang and J. He, Cellulose, 20, 327 (2013); doi:10.1007/s10570-012-9818-x.
- M.L. Hassan, R.M. Rowell, N.A. Fadl, S.F. Yacoub and A.W. Christainsen, J. Appl. Polym. Sci., 76, 561 (2000); doi:10.1002/(SICI)1097-4628(20000425)76:4<561::AID-APP14>3.0.CO;2-J.
- K.J. Edgar, C.M. Buchanan, J.S. Debenham, P.A. Rundquist, B.D. Seiler, M.C. Shelton and D. Tindall, Prog. Polym. Sci., 26, 1605 (2001); doi:10.1016/S0079-6700(01)00027-2.
- G.S. Luo, M. Niang and P. Schaetzel, Sep. Sci. Technol., 32, 1143 (1997); doi:10.1080/01496399708000952.
- M. Rahman and C.S. Brazel, Prog. Polym. Sci., 29, 1223 (2004); doi:10.1016/j.progpolymsci.2004.10.001.
- Y. Teramoto and Y. Nishio, Biomacromolecules, 5, 407 (2004); doi:10.1021/bm034453i.
- Y. Teramoto and Y. Nishio, Biomacromolecules, 5, 397 (2004); doi:10.1021/bm034452q.
- A.Y. Sankhe, S.M. Husson and S.M. Kilbey, Macromolecules, 39, 1376 (2006); doi:10.1021/ma0519361.
- S. Chen, G. Wu, Y. Liu and D. Long, Macromolecules, 39, 330 (2006); doi:10.1021/ma0520500.
- Z. Xu, Y. Yang, Y. Jiang, Y. Sun, Y. Shen and J. Pang, Molecules, 13, 490 (2008); doi:10.3390/molecules13030490.
References
D. Aoki, Y. Teramoto and Y. Nishio, Biomacromolecules, 8, 3749 (2007); doi:10.1021/bm7006828.
M. Bertoldo, G. Zampano, F.L. Terra, V. Villari and V. Castelvetro, Biomacromolecules, 12, 388 (2011); doi:10.1021/bm101143q.
Y. Cao, J. Wu, T. Meng, J. Zhang, J. He, H. Li and Y. Zhang, Carbohydr. Polym., 69, 665 (2007); doi:10.1016/j.carbpol.2007.02.001.
Y. Cao, H. Li and J. Zhang, Ind. Eng. Chem. Res., 50, 7808 (2011); doi:10.1021/ie2004362.
W.J. Deng, X.P. Zhuang, K.T. Guan and B.W. Cheng, Adv. Mater. Res., 221, 85 (2011); doi:10.4028/www.scientific.net/AMR.221.85.
G.A. El Seoud, G.A. Marson, G.T. Ciacco and E. Frollini, Macromol. Chem. Phys., 201, 882 (2000); doi:10.1002/(SICI)1521-3935(20000501)201:8<882::AID-MACP882>3.0.CO;2-I.
Y. Enomoto-Rogers, H. Kamitakahara, T. Takano and F. Nakatsubo, Biomacromolecules, 10, 2110 (2009); doi:10.1021/bm900229g.
S.C. Fox, B. Li, D. Xu and K.J. Edgar, Biomacromolecules, 12, 1956 (2011); doi:10.1021/bm200260d.
K.C. Gupta, S. Sahoo and K. Khandekar, Biomacromolecules, 3, 1087 (2002); doi:10.1021/bm020060s.
Y. Luan, J. Wu, M. Zhan, J. Zhang, J. Zhang and J. He, Cellulose, 20, 327 (2013); doi:10.1007/s10570-012-9818-x.
M.L. Hassan, R.M. Rowell, N.A. Fadl, S.F. Yacoub and A.W. Christainsen, J. Appl. Polym. Sci., 76, 561 (2000); doi:10.1002/(SICI)1097-4628(20000425)76:4<561::AID-APP14>3.0.CO;2-J.
K.J. Edgar, C.M. Buchanan, J.S. Debenham, P.A. Rundquist, B.D. Seiler, M.C. Shelton and D. Tindall, Prog. Polym. Sci., 26, 1605 (2001); doi:10.1016/S0079-6700(01)00027-2.
G.S. Luo, M. Niang and P. Schaetzel, Sep. Sci. Technol., 32, 1143 (1997); doi:10.1080/01496399708000952.
M. Rahman and C.S. Brazel, Prog. Polym. Sci., 29, 1223 (2004); doi:10.1016/j.progpolymsci.2004.10.001.
Y. Teramoto and Y. Nishio, Biomacromolecules, 5, 407 (2004); doi:10.1021/bm034453i.
Y. Teramoto and Y. Nishio, Biomacromolecules, 5, 397 (2004); doi:10.1021/bm034452q.
A.Y. Sankhe, S.M. Husson and S.M. Kilbey, Macromolecules, 39, 1376 (2006); doi:10.1021/ma0519361.
S. Chen, G. Wu, Y. Liu and D. Long, Macromolecules, 39, 330 (2006); doi:10.1021/ma0520500.
Z. Xu, Y. Yang, Y. Jiang, Y. Sun, Y. Shen and J. Pang, Molecules, 13, 490 (2008); doi:10.3390/molecules13030490.