Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Supercritical Water Oxidation of Phenolic Wastewater with Glycol
Corresponding Author(s) : Guang-Qiang Ma
Asian Journal of Chemistry,
Vol. 27 No. 5 (2015): Vol 27 Issue 5
Abstract
Phenolic wastewater is a typical kind of industrial effluents containing high toxicity and poor biodegradability. Huge quantities of polluted phenolic waters are formed through several chemical operations which includes coking, coal gasification, oil refineries, plastics, pesticides, steel and phenolic resin production. This paper deals with treatment of high concentrated phenolic wastewater by supercritical water oxidation method. The effects of H2O2 dosage, reaction time, temperature and concentration of glycol on removal efficiency of phenol were studied with laboratory bench-scale experiments. The results indicated that the removal process was more effective under the experimental conditions. The best removal efficiency of phenol reached 99.8 %. This investigation will provide fundamental method for developing a pretreatment method of industrial phenolic wastewater with flexibility, simplicity and high activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.M. Borghei and S.H. Hosseini, Process Biochem., 39, 1177 (2004); doi:10.1016/S0032-9592(02)00195-4.
- L. Kennedy, J. Vijaya, K. Kayalvizhi and G. Sekaran, Chem. Eng. J., 132, 279 (2007); doi:10.1016/j.cej.2007.01.009.
- M. Megharaj, H. Pearson and K. Venkateswarlu, Arch. Environ. Contam. Toxicol., 21, 578 (1991); doi:10.1007/BF01183881.
- N. Saha, F. Bhunia and A. Kaviraj, Bull. Environ. Contam. Toxicol., 63, 195 (1999); doi:10.1007/s001289900966.
- E. Cavalieri, K. Li, N. Balu, M. Saeed, P. Devanesan, S. Higginbotham, J. Zhao, M. Gross and E. Rogan, Carcinogenesis, 23, 1071 (2002); doi:10.1093/carcin/23.6.1071.
- B. Bukowska, J. Michałowicz, A. Krokosz and P. Sicińska, Blood Cells Mol. Dis., 39, 238 (2007); doi:10.1016/j.bcmd.2007.06.003.
- L. Gianfreda, G. Iamarino, R. Scelza and M.A. Rao, Biocatalysis Biotransform., 24, 177 (2006); doi:10.1080/10242420500491938.
- S.H. Lin and T.S. Chuang, Technol. Environ. Chem., 44, 243 (1994).
- M. Zilli, A. Converti, A. Lodi, M.D. Borghi and G. Ferraiolo, Biotechnol. Bioeng., 41, 693 (1993); doi:10.1002/bit.260410703.
- I. Singleton, J. Chem. Technol. Biotechnol., 59, 9 (1994); doi:10.1002/jctb.280590104.
- G. González, M.G. Herrera, M.T. García and M.M. Peña, Bioresour. Technol., 76, 245 (2001); doi:10.1016/S0960-8524(00)00092-4.
- T. Mizuno, M. Goto, A. Kodama and T. Hirose, Ind. Eng. Chem. Res., 39, 2807 (2000); doi:10.1021/ie0001117.
- J.R. Portela, E. Nebot and E. Martinez de la Ossa, J. Supercrit. Fluids, 21, 135 (2001); doi:10.1016/S0896-8446(01)00084-5.
- B. Veriansyah, T.-J. Park, J.-S. Lim and Y.-W. Lee, J. Supercrit. Fluids, 34, 51 (2005); doi:10.1016/j.supflu.2004.10.001.
- C.J. Martino and P.E. Savage, Environ. Sci. Technol., 33, 1911 (1999); doi:10.1021/es981201u.
- J.M. Ploeger, W.H. Green and J.W. Tester, J. Supercrit. Fluids, 39, 239 (2006); doi:10.1016/j.supflu.2006.03.003.
- P.E. Savage, J. Yu, N. Stylski and E.E. Brock, J. Supercrit. Fluids, 12, 141 (1998); doi:10.1016/S0896-8446(97)00046-6.
- E.E. Brock, P.E. Savage and J.R. Barker, Chem. Eng. Sci., 53, 857 (1998); doi:10.1016/S0009-2509(97)00387-4.
- P.E. Savage, J. Rovira, N. Stylski and C.J. Martino, J. Supercrit. Fluids, 17, 155 (2000); doi:10.1016/S0896-8446(99)00052-2.
References
S.M. Borghei and S.H. Hosseini, Process Biochem., 39, 1177 (2004); doi:10.1016/S0032-9592(02)00195-4.
L. Kennedy, J. Vijaya, K. Kayalvizhi and G. Sekaran, Chem. Eng. J., 132, 279 (2007); doi:10.1016/j.cej.2007.01.009.
M. Megharaj, H. Pearson and K. Venkateswarlu, Arch. Environ. Contam. Toxicol., 21, 578 (1991); doi:10.1007/BF01183881.
N. Saha, F. Bhunia and A. Kaviraj, Bull. Environ. Contam. Toxicol., 63, 195 (1999); doi:10.1007/s001289900966.
E. Cavalieri, K. Li, N. Balu, M. Saeed, P. Devanesan, S. Higginbotham, J. Zhao, M. Gross and E. Rogan, Carcinogenesis, 23, 1071 (2002); doi:10.1093/carcin/23.6.1071.
B. Bukowska, J. Michałowicz, A. Krokosz and P. Sicińska, Blood Cells Mol. Dis., 39, 238 (2007); doi:10.1016/j.bcmd.2007.06.003.
L. Gianfreda, G. Iamarino, R. Scelza and M.A. Rao, Biocatalysis Biotransform., 24, 177 (2006); doi:10.1080/10242420500491938.
S.H. Lin and T.S. Chuang, Technol. Environ. Chem., 44, 243 (1994).
M. Zilli, A. Converti, A. Lodi, M.D. Borghi and G. Ferraiolo, Biotechnol. Bioeng., 41, 693 (1993); doi:10.1002/bit.260410703.
I. Singleton, J. Chem. Technol. Biotechnol., 59, 9 (1994); doi:10.1002/jctb.280590104.
G. González, M.G. Herrera, M.T. García and M.M. Peña, Bioresour. Technol., 76, 245 (2001); doi:10.1016/S0960-8524(00)00092-4.
T. Mizuno, M. Goto, A. Kodama and T. Hirose, Ind. Eng. Chem. Res., 39, 2807 (2000); doi:10.1021/ie0001117.
J.R. Portela, E. Nebot and E. Martinez de la Ossa, J. Supercrit. Fluids, 21, 135 (2001); doi:10.1016/S0896-8446(01)00084-5.
B. Veriansyah, T.-J. Park, J.-S. Lim and Y.-W. Lee, J. Supercrit. Fluids, 34, 51 (2005); doi:10.1016/j.supflu.2004.10.001.
C.J. Martino and P.E. Savage, Environ. Sci. Technol., 33, 1911 (1999); doi:10.1021/es981201u.
J.M. Ploeger, W.H. Green and J.W. Tester, J. Supercrit. Fluids, 39, 239 (2006); doi:10.1016/j.supflu.2006.03.003.
P.E. Savage, J. Yu, N. Stylski and E.E. Brock, J. Supercrit. Fluids, 12, 141 (1998); doi:10.1016/S0896-8446(97)00046-6.
E.E. Brock, P.E. Savage and J.R. Barker, Chem. Eng. Sci., 53, 857 (1998); doi:10.1016/S0009-2509(97)00387-4.
P.E. Savage, J. Rovira, N. Stylski and C.J. Martino, J. Supercrit. Fluids, 17, 155 (2000); doi:10.1016/S0896-8446(99)00052-2.