Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation of C60 Nanowhiskers/NiS2 Nanocomposites and Photocatalytic Degradation of Organic Dyes
Corresponding Author(s) : Weon Bae Ko
Asian Journal of Chemistry,
Vol. 27 No. 5 (2015): Vol 27 Issue 5
Abstract
[C60]Fullerene nanowhiskers/NiS2 nanocomposites were prepared by a reaction of NiS2 nanoparticles and C60 nanowhiskers. The C60 nanowhiskers (FNWs) were synthesized by a liquid-liquid interfacial precipitation method using solvent solutions, such as benzene and toluene saturated with C60 powder and isopropyl alcohol. The NiS2 nanoparticles were synthesized by a reaction of NiCl2·H2O and Na2S2O3·5H2O in deionized water under microwave irradiation. The C60 anowhiskers/NiS2 nanocomposites were calcined in an electric furnace at 700 °C for 2 h. The C60 nanowhiskers/NiS2 nanocomposites were characterized by X-ray diffraction and UV-visible spectrophotometry. The C60 nanowhiskers/NiS2 nanocomposites were evaluated as a photocatalyst by UV-visible specrophotometry in the degradation of organic dyes, such as methylene blue and brilliant green, under ultraviolet light at 365 nm.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.C. Haddon, L.E. Brus and K. Raghavachari, Chem. Phys. Lett., 125, 459 (1986);doi:10.1016/0009-2614(86)87079-8.
- Y. Yosida, Jpn. J. Appl. Phys., 31, L505 (1992); doi:10.1143/JJAP.31.L505.
- H. Moriyama, H. Kobayashi, A. Kobayashi and T. Watanabe, Chem. Phys. Lett., 116, 238 (1995).
- S. Ogawa, H. Furusawa, T. Watanabe and H. Yamamoto, J. Phys. Chem. Solids, 61, 1047 (2000); doi:10.1016/S0022-3697(99)00361-3.
- K. Miyazawa, Y. Kuwasaki, A. Obayashi and M. Kuwabara, J. Mater. Res., 17, 83 (2002); doi:10.1557/JMR.2002.0014.
- K. Miyazawa, K. Hamamoto, S. Nagata and T. Suga, J. Mater. Res., 18, 1096 (2003); doi:10.1557/JMR.2003.0151.
- K. Miyazawa, A. Obayashi and M. Kuwabara, J. Am. Ceram. Soc., 84, 3037 (2001); doi:10.1111/j.1151-2916.2001.tb01133.x.
- K. Miyazawa, Y. Kuwasaki, K. Hamamoto, S. Nagata, A. Obayashi and M. Kuwabara, Surf. Interface Anal., 35, 117 (2003); doi:10.1002/sia.1506.
- R.M. Fleming, A.R. Kortan, B. Hessen, T. Siegrist, F.A. Thiel, P. Marsh, R.C. Haddon, R. Tycko, G. Dabbagh, M.L. Kaplan and A.M. Mujsce, Phys. Rev. B, 44, 888 (1991); doi:10.1103/PhysRevB.44.888.
- J.Y. Ying, Chem. Eng. Sci., 61, 1540 (2006); doi:10.1016/j.ces.2005.08.021.
- D.L. Leslie-Pelecky and R.D. Rieke, Chem. Mater., 8, 1770 (1996); doi:10.1021/cm960077f.
- E.C. Linganiso, S.D. Mhlanga, N.J. Coville and B.W. Mwakikunga, J. Alloys Comp., 552, 345 (2013); doi:10.1016/j.jallcom.2012.10.102.
- H. Deng, C. Chen, Q. Peng and Y.D. Li, Mater. Chem. Phys., 100, 224 (2006); doi:10.1016/j.matchemphys.2005.12.033.
- G. An, L. Chenguang, Y. Hou, X. Zhang and Y. Liu, Mater. Lett., 62, 2643 (2008); doi:10.1016/j.matlet.2008.01.005.
- L. Sangaletti, F. Parmigiani, T. Thio and W. Bennett, Phys. Rev. B, 55, 9514 (1997); doi:10.1103/PhysRevB.55.9514.
- T. Thio, J.W. Bennett and T.R. Thurston, Phys. Rev. B, 52, 3555 (1995); doi:10.1103/PhysRevB.52.3555.
- A. Fujimori, K. Mamiya, T. Mizokawa, T. Miyadai, T. Sekiguchi, H. Takahashi, N. Môri and S. Suga, Phys. Rev. B, 54, 16329 (1996); doi:10.1103/PhysRevB.54.16329.
- X.H. Chen and R. Fang, Chem. Mater., 13, 802 (2001); doi:10.1021/cm000517+.
- Q. Xuefeng, L. Yadong, X. Yi and Q. Yitai, Mater. Chem. Phys., 66, 97 (2000); doi:10.1016/S0254-0584(00)00269-8.
- S.H. Zhang, Y. Song, H. Liang and M.H. Zeng, CrystEngComm, 11, 865 (2009); doi:10.1039/b815675a.
- Y.J. Zhu, W.W. Wang, R.J. Qi and X.-L. Hu, Angew. Chem. Int. Ed., 43, 1410 (2004); doi:10.1002/anie.200353101.
- S.K. Meher, P. Justin and G. Ranga Rao, ACS Appl. Mater. Interfaces, 3, 2063 (2011); doi:10.1021/am200294k.
- C.Y. Cao, W. Guo, Z.M. Cui, W.G. Song and W. Cai, J. Mater. Chem., 21, 3204 (2011); doi:10.1039/c0jm03749d.
- L.P. Xu, Y.-S. Ding, C.-H. Chen, L. Zhao, C. Rimkus, R. Joesten and S.L. Suib, Chem. Mater., 20, 308 (2008); doi:10.1021/cm702207w.
- A.L. WashingtonII and G.F. Strouse, J. Am. Chem. Soc., 130, 8916 (2008); doi:10.1021/ja711115r.
- A.B. Panda, G.P. Glaspell and M.S. El-Shall, J. Am. Chem. Soc., 128, 2790 (2006); doi:10.1021/ja058148b.
- B. Hu, S.B. Wang, K. Wang, M. Zhang and S.H. Yu, J. Phys. Chem. C, 112, 11169 (2008); doi:10.1021/jp801267j.
- X. Hu, J.C. Yu, J. Gong and Q. Li, Cryst. Growth Des., 7, 2444 (2007); doi:10.1021/cg060767o.
References
R.C. Haddon, L.E. Brus and K. Raghavachari, Chem. Phys. Lett., 125, 459 (1986);doi:10.1016/0009-2614(86)87079-8.
Y. Yosida, Jpn. J. Appl. Phys., 31, L505 (1992); doi:10.1143/JJAP.31.L505.
H. Moriyama, H. Kobayashi, A. Kobayashi and T. Watanabe, Chem. Phys. Lett., 116, 238 (1995).
S. Ogawa, H. Furusawa, T. Watanabe and H. Yamamoto, J. Phys. Chem. Solids, 61, 1047 (2000); doi:10.1016/S0022-3697(99)00361-3.
K. Miyazawa, Y. Kuwasaki, A. Obayashi and M. Kuwabara, J. Mater. Res., 17, 83 (2002); doi:10.1557/JMR.2002.0014.
K. Miyazawa, K. Hamamoto, S. Nagata and T. Suga, J. Mater. Res., 18, 1096 (2003); doi:10.1557/JMR.2003.0151.
K. Miyazawa, A. Obayashi and M. Kuwabara, J. Am. Ceram. Soc., 84, 3037 (2001); doi:10.1111/j.1151-2916.2001.tb01133.x.
K. Miyazawa, Y. Kuwasaki, K. Hamamoto, S. Nagata, A. Obayashi and M. Kuwabara, Surf. Interface Anal., 35, 117 (2003); doi:10.1002/sia.1506.
R.M. Fleming, A.R. Kortan, B. Hessen, T. Siegrist, F.A. Thiel, P. Marsh, R.C. Haddon, R. Tycko, G. Dabbagh, M.L. Kaplan and A.M. Mujsce, Phys. Rev. B, 44, 888 (1991); doi:10.1103/PhysRevB.44.888.
J.Y. Ying, Chem. Eng. Sci., 61, 1540 (2006); doi:10.1016/j.ces.2005.08.021.
D.L. Leslie-Pelecky and R.D. Rieke, Chem. Mater., 8, 1770 (1996); doi:10.1021/cm960077f.
E.C. Linganiso, S.D. Mhlanga, N.J. Coville and B.W. Mwakikunga, J. Alloys Comp., 552, 345 (2013); doi:10.1016/j.jallcom.2012.10.102.
H. Deng, C. Chen, Q. Peng and Y.D. Li, Mater. Chem. Phys., 100, 224 (2006); doi:10.1016/j.matchemphys.2005.12.033.
G. An, L. Chenguang, Y. Hou, X. Zhang and Y. Liu, Mater. Lett., 62, 2643 (2008); doi:10.1016/j.matlet.2008.01.005.
L. Sangaletti, F. Parmigiani, T. Thio and W. Bennett, Phys. Rev. B, 55, 9514 (1997); doi:10.1103/PhysRevB.55.9514.
T. Thio, J.W. Bennett and T.R. Thurston, Phys. Rev. B, 52, 3555 (1995); doi:10.1103/PhysRevB.52.3555.
A. Fujimori, K. Mamiya, T. Mizokawa, T. Miyadai, T. Sekiguchi, H. Takahashi, N. Môri and S. Suga, Phys. Rev. B, 54, 16329 (1996); doi:10.1103/PhysRevB.54.16329.
X.H. Chen and R. Fang, Chem. Mater., 13, 802 (2001); doi:10.1021/cm000517+.
Q. Xuefeng, L. Yadong, X. Yi and Q. Yitai, Mater. Chem. Phys., 66, 97 (2000); doi:10.1016/S0254-0584(00)00269-8.
S.H. Zhang, Y. Song, H. Liang and M.H. Zeng, CrystEngComm, 11, 865 (2009); doi:10.1039/b815675a.
Y.J. Zhu, W.W. Wang, R.J. Qi and X.-L. Hu, Angew. Chem. Int. Ed., 43, 1410 (2004); doi:10.1002/anie.200353101.
S.K. Meher, P. Justin and G. Ranga Rao, ACS Appl. Mater. Interfaces, 3, 2063 (2011); doi:10.1021/am200294k.
C.Y. Cao, W. Guo, Z.M. Cui, W.G. Song and W. Cai, J. Mater. Chem., 21, 3204 (2011); doi:10.1039/c0jm03749d.
L.P. Xu, Y.-S. Ding, C.-H. Chen, L. Zhao, C. Rimkus, R. Joesten and S.L. Suib, Chem. Mater., 20, 308 (2008); doi:10.1021/cm702207w.
A.L. WashingtonII and G.F. Strouse, J. Am. Chem. Soc., 130, 8916 (2008); doi:10.1021/ja711115r.
A.B. Panda, G.P. Glaspell and M.S. El-Shall, J. Am. Chem. Soc., 128, 2790 (2006); doi:10.1021/ja058148b.
B. Hu, S.B. Wang, K. Wang, M. Zhang and S.H. Yu, J. Phys. Chem. C, 112, 11169 (2008); doi:10.1021/jp801267j.
X. Hu, J.C. Yu, J. Gong and Q. Li, Cryst. Growth Des., 7, 2444 (2007); doi:10.1021/cg060767o.