Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation of Monodisperse Fe3O4 Microspheres/Polyaniline Composites
Corresponding Author(s) : W. Liu
Asian Journal of Chemistry,
Vol. 27 No. 5 (2015): Vol 27 Issue 5
Abstract
The synthesis of monodisperse magnetic ferrite nanomaterials plays an important role in several scientific and technological areas. In this work, Fe3O4/polyaniline (Fe3O4/PANI) microspheres have been successfully prepared through a novel liquid-liquid interface polymerization method. In this technique, Fe3+ was used as a milder polymerization oxidant which makes the aniline grow on the surface of Fe3O4 uniformly. The scanning electron microscope images demonstrate that obtained composites present a uniform particle size and good dispersibility. Meantime, the UV/visible spectra prove that the Fe3O4/PANI microspheres have been prepared successfully. The present method can be extendable to fabricate other magnetic/conductive composites and these unique core/shell spherical materials could find applications in catalyst supports or biomedical areas.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.K. Yi, S.S. Lee and J.Y. Ying, Chem. Mater., 18, 2459 (2006); doi:10.1021/cm052885p.
- C.M. Yu, L.L. Gou, X.H. Zhou, N. Bao and H.Y. Gu, Electrochim. Acta, 56, 9056 (2011); doi:10.1016/j.electacta.2011.05.135.
- H.Y. Chen, D. Sulejmanovic, T.L. Moore, D.C. Colvin, B. Qi, O.T. Mefford, J.C. Gore, F. Alexis, S.J. Hwu and J.N. Anker, Chem. Mater., 26, 2105 (2014); doi:10.1021/cm404168a.
- C.R. Sun, J.S.H. Lee and M.Q. Zhang, Adv. Drug Deliv. Rev., 60, 1252 (2008); doi:10.1016/j.addr.2008.03.018.
- R.F. Chen, G.Q. Song and Y. Wei, J. Phys. Chem. C, 114, 13409 (2010); doi:10.1021/jp912162g.
- A. Pich, S. Bhattacharya, Y. Lu, V. Boyko and H.J.P. Adler, Langmuir, 20, 10706 (2004); doi:10.1021/la040084f.
- H. Xu, L. Cui, N. Tong and H. Gu, J. Am. Chem. Soc., 128, 15582 (2006); doi:10.1021/ja066165a.
- M. Wan, Adv. Mater., 20, 2926 (2008); doi:10.1002/adma.200800466.
- A.G. MacDiarmid, Angew. Chem. Int. Ed., 40, 2581 (2001); doi:10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2.
- M. Zhao, X.M. Wu and C.X. Cai, J. Phys. Chem. C, 113, 4987 (2009); doi:10.1021/jp807621y.
- L. Nikzad, S. Alibeigi, M.R. Vaezi, B. Yazdani and M.R. Rahimipour, Chem. Eng. Technol., 32, 861 (2009); doi:10.1002/ceat.200800470.
- Q. Wu, Y. Xu, Z. Yao, A. Liu and G. Shi, ACS Nano, 4, 1963 (2010); doi:10.1021/nn1000035.
- S.H. Xuan, Y.X.J. Wang, J.C. Yu and K.C.F. Leung, Langmuir, 25, 11835 (2009); doi:10.1021/la901462t.
- C.K. Cui, Y.C. Du, T.H. Li, X.Y. Zheng, X.H. Wang, X.J. Han and P. Xu, J. Phys. Chem. B, 116, 9523 (2012); doi:10.1021/jp3024099.
- H. Deng, X.L. Li, Q. Peng, X. Wang, J.P. Chen and Y.D. Li, Angew. Chem. Int. Ed., 117, 2842 (2005); doi:10.1002/ange.200462551.
- J.D. Qiu, L. Shi, R.P. Liang, G.C. Wang and X.H. Xia, Chem. Eur. J., 18, 7950 (2012); doi:10.1002/chem.201200258.
- S. Xuan, Y.X.J. Wang, K.C.F. Leung and K. Shu, J. Phys. Chem. C, 112, 18804 (2008); doi:10.1021/jp807124z.
- D.Q. Tang, R. Yuan and Y.Q. Chai, J. Phys. Chem. B, 110, 11640 (2006); doi:10.1021/jp060950s.
- W. Liu, J. Kumar, S. Tripathy, K.J. Senecal and L. Samuelson, J. Am. Chem. Soc., 121, 71 (1999); doi:10.1021/ja982270b.
- P. Xu, X. Han, C. Wang, B. Zhang, X. Wang and H.L. Wang, Macromol. Rapid Commun., 29, 1392 (2008); doi:10.1002/marc.200800173.
References
D.K. Yi, S.S. Lee and J.Y. Ying, Chem. Mater., 18, 2459 (2006); doi:10.1021/cm052885p.
C.M. Yu, L.L. Gou, X.H. Zhou, N. Bao and H.Y. Gu, Electrochim. Acta, 56, 9056 (2011); doi:10.1016/j.electacta.2011.05.135.
H.Y. Chen, D. Sulejmanovic, T.L. Moore, D.C. Colvin, B. Qi, O.T. Mefford, J.C. Gore, F. Alexis, S.J. Hwu and J.N. Anker, Chem. Mater., 26, 2105 (2014); doi:10.1021/cm404168a.
C.R. Sun, J.S.H. Lee and M.Q. Zhang, Adv. Drug Deliv. Rev., 60, 1252 (2008); doi:10.1016/j.addr.2008.03.018.
R.F. Chen, G.Q. Song and Y. Wei, J. Phys. Chem. C, 114, 13409 (2010); doi:10.1021/jp912162g.
A. Pich, S. Bhattacharya, Y. Lu, V. Boyko and H.J.P. Adler, Langmuir, 20, 10706 (2004); doi:10.1021/la040084f.
H. Xu, L. Cui, N. Tong and H. Gu, J. Am. Chem. Soc., 128, 15582 (2006); doi:10.1021/ja066165a.
M. Wan, Adv. Mater., 20, 2926 (2008); doi:10.1002/adma.200800466.
A.G. MacDiarmid, Angew. Chem. Int. Ed., 40, 2581 (2001); doi:10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2.
M. Zhao, X.M. Wu and C.X. Cai, J. Phys. Chem. C, 113, 4987 (2009); doi:10.1021/jp807621y.
L. Nikzad, S. Alibeigi, M.R. Vaezi, B. Yazdani and M.R. Rahimipour, Chem. Eng. Technol., 32, 861 (2009); doi:10.1002/ceat.200800470.
Q. Wu, Y. Xu, Z. Yao, A. Liu and G. Shi, ACS Nano, 4, 1963 (2010); doi:10.1021/nn1000035.
S.H. Xuan, Y.X.J. Wang, J.C. Yu and K.C.F. Leung, Langmuir, 25, 11835 (2009); doi:10.1021/la901462t.
C.K. Cui, Y.C. Du, T.H. Li, X.Y. Zheng, X.H. Wang, X.J. Han and P. Xu, J. Phys. Chem. B, 116, 9523 (2012); doi:10.1021/jp3024099.
H. Deng, X.L. Li, Q. Peng, X. Wang, J.P. Chen and Y.D. Li, Angew. Chem. Int. Ed., 117, 2842 (2005); doi:10.1002/ange.200462551.
J.D. Qiu, L. Shi, R.P. Liang, G.C. Wang and X.H. Xia, Chem. Eur. J., 18, 7950 (2012); doi:10.1002/chem.201200258.
S. Xuan, Y.X.J. Wang, K.C.F. Leung and K. Shu, J. Phys. Chem. C, 112, 18804 (2008); doi:10.1021/jp807124z.
D.Q. Tang, R. Yuan and Y.Q. Chai, J. Phys. Chem. B, 110, 11640 (2006); doi:10.1021/jp060950s.
W. Liu, J. Kumar, S. Tripathy, K.J. Senecal and L. Samuelson, J. Am. Chem. Soc., 121, 71 (1999); doi:10.1021/ja982270b.
P. Xu, X. Han, C. Wang, B. Zhang, X. Wang and H.L. Wang, Macromol. Rapid Commun., 29, 1392 (2008); doi:10.1002/marc.200800173.