Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Properties of Nano-Perovskite Mg0.5Nd0.5CoO3 by Co-Precipitation Technique
Corresponding Author(s) : Zhongzheng Yang
Asian Journal of Chemistry,
Vol. 27 No. 5 (2015): Vol 27 Issue 5
Abstract
The nano-perovskite Mg0.5Nd0.5CoO3 was prepared by co-precipitation technique using Nd(NO3)3·6H2O, Mg(NO3)2·6H2O and Co(NO3)3·6H2O as main raw materials and the effects of calcination temperatures on the lattice parameters, particle sizes and micro stress of the perovskite were studied by X-ray diffraction and transmission electron microscopy. The results show that the Mg0.5Nd0.5CoO3 have formed after calcination at 700 °C and the finishing temperatures of synthesizing perovskites is at 800 °C. After calcination at 800 °C, the lattice parameter of the perovskites Mg0.5Nd0.5CoO3 is 7.54367 Å and the average sizes is 17.5 nm. The lattice parameter and the average sizes of the perovskite have declining trends with increasing temperatures, but the average sizes of the perovskite maintain almost unchanged with increasing temperatures and there is no micro stress in the perovskite. The average lattice parameters of the perovskite Mg0.5Nd0.5CoO3 is lower than the lattice parameter of the perovskite NdCoO3.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Peña and J.L.G. Fierro, Chem. Rev., 101, 1981 (2001); doi:10.1021/cr980129f.
- R. Ubic and G. Subodh, J. Alloys Comp., 488, 374 (2009); doi:10.1016/j.jallcom.2009.08.139.
- C. Tealdi, M.S. Islam, C.A.J. Fisher, L. Malavasi and G. Flor, Prog. Solid State Chem., 35, 491 (2007); doi:10.1016/j.progsolidstchem.2007.01.015.
- S. Dimitrovska-Lazova, V. Mireski, D. Kovacheva and S. Aleksovska, J. Solid State Electrochem., 16, 219 (2012); doi:10.1007/s10008-011-1320-0.
- M.S. Jayalakshmy and J. Philip, Sens. Actuators A, 206, 121 (2014); doi:10.1016/j.sna.2013.12.004.
- A. Patil, S.C. Parida, S. Dash and V. Venugopal, Thermochim. Acta, 465, 25 (2007); doi:10.1016/j.tca.2007.09.001.
- H. Hashimoto, T. Kusunose and T. Sekino, J. Alloys Comp., 484, 246 (2009); doi:10.1016/j.jallcom.2009.04.100.
- R. Kun, S. Populoh, L. Karvonen, J. Gumbert, A. Weidenkaff and M. Busse, J. Alloys Comp., 579, 147 (2013); doi:10.1016/j.jallcom.2013.05.019.
- V.R. Choudhary and K.C. Mondal Appl. Energy, 83, 1024 (2006); doi:10.1016/j.apenergy.2005.09.008.
- L. Malavasi, C. Tealdi, G. Flor, G. Chiodelli, V. Cervetto, A. Montenero and M. Borella, Sens. Actuators B, 105, 407 (2005); doi:10.1016/j.snb.2004.06.029.
- R. Zhang, J. Hu, Z. Han, M. Zhao, Z. Wu, Y. Zhang and H. Qin, J. Rare Earths, 28, 591 (2010); doi:10.1016/S1002-0721(09)60160-5.
- H. Wang, J. Liu, Z. Zhao, Y. Wei and C. Xu, Catal. Today, 184, 288 (2012); doi:10.1016/j.cattod.2012.01.005.
- G. Murtaza, I. Ahmad, B. Amin, A. Afaq, M. Maqbool, J. Maqssod, I. Khan and M. Zahid, Opt. Mater., 33, 553 (2011); doi:10.1016/j.optmat.2010.10.052.
- M. Sánchez-Andújar, A. Castro-Couceiro, B. Rivas-Murias, J. Mira, J. Rivas and M.A. Señarís-Rodríguez, J. Alloys Comp., 437, 64 (2007); doi:10.1016/j.jallcom.2006.07.095.
- R. Thakur, R.K. Thakur and N.K. Gaur, Thermochim. Acta, 550, 53 (2012); doi:10.1016/j.tca.2012.09.025.
- C. Tealdi, L. Malavasi, C.A. J. Fisher and M.S. Islam, J. Phys. Chem. B, 110, 5395 (2006); doi:10.1021/jp0571325.
- O.A. Shlyakhtin, G.N. Mazo, S.A. Malyshev, L.N. Kolchina, A.V. Knot’ko, A.S. Loktev and A.G. Dedov, Mater. Res. Bull., 48, 245 (2013); doi:10.1016/j.materresbull.2012.10.035.
- A.S. Verma and A. Kumar, J. Alloys Comp., 541, 210 (2012); doi:10.1016/j.jallcom.2012.07.027.
- G.T.N. Bensemma, S. Glinsek, M. Kosec, K. Taïbi and M. Abbaci, J. Electroceram., 30, 206 (2013); doi:10.1007/s10832-013-9785-0.
- R. Thakur, A. Srivastava, R.K. Thakur and N.K. Gaur, J. Alloys Comp., 516, 58 (2012); doi:10.1016/j.jallcom.2011.11.128.
- C. Tealdi, L. Malavasi, F. Gozzo, C. Ritter, M.C. Mozzati, G. Chiodelli, and G. Flor, Chem. Mater., 19, 4741 (2007); doi:10.1021/cm071425o.
- A.S. Verma and V.K. Jindal, J. Alloys Comp., 485, 514 (2009); doi:10.1016/j.jallcom.2009.06.001.
- W. Chen, F. Li and J. Yu, Mater. Lett., 61, 397 (2007); doi:10.1016/j.matlet.2006.04.069.
References
M.A. Peña and J.L.G. Fierro, Chem. Rev., 101, 1981 (2001); doi:10.1021/cr980129f.
R. Ubic and G. Subodh, J. Alloys Comp., 488, 374 (2009); doi:10.1016/j.jallcom.2009.08.139.
C. Tealdi, M.S. Islam, C.A.J. Fisher, L. Malavasi and G. Flor, Prog. Solid State Chem., 35, 491 (2007); doi:10.1016/j.progsolidstchem.2007.01.015.
S. Dimitrovska-Lazova, V. Mireski, D. Kovacheva and S. Aleksovska, J. Solid State Electrochem., 16, 219 (2012); doi:10.1007/s10008-011-1320-0.
M.S. Jayalakshmy and J. Philip, Sens. Actuators A, 206, 121 (2014); doi:10.1016/j.sna.2013.12.004.
A. Patil, S.C. Parida, S. Dash and V. Venugopal, Thermochim. Acta, 465, 25 (2007); doi:10.1016/j.tca.2007.09.001.
H. Hashimoto, T. Kusunose and T. Sekino, J. Alloys Comp., 484, 246 (2009); doi:10.1016/j.jallcom.2009.04.100.
R. Kun, S. Populoh, L. Karvonen, J. Gumbert, A. Weidenkaff and M. Busse, J. Alloys Comp., 579, 147 (2013); doi:10.1016/j.jallcom.2013.05.019.
V.R. Choudhary and K.C. Mondal Appl. Energy, 83, 1024 (2006); doi:10.1016/j.apenergy.2005.09.008.
L. Malavasi, C. Tealdi, G. Flor, G. Chiodelli, V. Cervetto, A. Montenero and M. Borella, Sens. Actuators B, 105, 407 (2005); doi:10.1016/j.snb.2004.06.029.
R. Zhang, J. Hu, Z. Han, M. Zhao, Z. Wu, Y. Zhang and H. Qin, J. Rare Earths, 28, 591 (2010); doi:10.1016/S1002-0721(09)60160-5.
H. Wang, J. Liu, Z. Zhao, Y. Wei and C. Xu, Catal. Today, 184, 288 (2012); doi:10.1016/j.cattod.2012.01.005.
G. Murtaza, I. Ahmad, B. Amin, A. Afaq, M. Maqbool, J. Maqssod, I. Khan and M. Zahid, Opt. Mater., 33, 553 (2011); doi:10.1016/j.optmat.2010.10.052.
M. Sánchez-Andújar, A. Castro-Couceiro, B. Rivas-Murias, J. Mira, J. Rivas and M.A. Señarís-Rodríguez, J. Alloys Comp., 437, 64 (2007); doi:10.1016/j.jallcom.2006.07.095.
R. Thakur, R.K. Thakur and N.K. Gaur, Thermochim. Acta, 550, 53 (2012); doi:10.1016/j.tca.2012.09.025.
C. Tealdi, L. Malavasi, C.A. J. Fisher and M.S. Islam, J. Phys. Chem. B, 110, 5395 (2006); doi:10.1021/jp0571325.
O.A. Shlyakhtin, G.N. Mazo, S.A. Malyshev, L.N. Kolchina, A.V. Knot’ko, A.S. Loktev and A.G. Dedov, Mater. Res. Bull., 48, 245 (2013); doi:10.1016/j.materresbull.2012.10.035.
A.S. Verma and A. Kumar, J. Alloys Comp., 541, 210 (2012); doi:10.1016/j.jallcom.2012.07.027.
G.T.N. Bensemma, S. Glinsek, M. Kosec, K. Taïbi and M. Abbaci, J. Electroceram., 30, 206 (2013); doi:10.1007/s10832-013-9785-0.
R. Thakur, A. Srivastava, R.K. Thakur and N.K. Gaur, J. Alloys Comp., 516, 58 (2012); doi:10.1016/j.jallcom.2011.11.128.
C. Tealdi, L. Malavasi, F. Gozzo, C. Ritter, M.C. Mozzati, G. Chiodelli, and G. Flor, Chem. Mater., 19, 4741 (2007); doi:10.1021/cm071425o.
A.S. Verma and V.K. Jindal, J. Alloys Comp., 485, 514 (2009); doi:10.1016/j.jallcom.2009.06.001.
W. Chen, F. Li and J. Yu, Mater. Lett., 61, 397 (2007); doi:10.1016/j.matlet.2006.04.069.