Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical Behaviour and Simultaneous Determination of Hydroquinone and Catechol at Poly-L-leu Modified Carbon Electrode
Corresponding Author(s) : Zong-Rong Song
Asian Journal of Chemistry,
Vol. 27 No. 4 (2015): Vol 27 Issue 4
Abstract
The electrochemical redox reaction of hydroquinone and poly catechol was investigated with poly(L-leucine acid) modified glassy-carbon electrode (poly-L-leu/GCE) via cyclic voltammetry. The poly-L-leu/GCE has shown an excellent electrocatalytic activity for hydroquinone and catechol and two oxidation peaks of hydroquinone can be completely separated at this modified electrode. A highly selective and simultaneous determination of hydroquinone and catechol has been explored at the poly-L-leu/GCE. Under the optimized conditions, the differential pulse voltammetry response of the modified electrode to catechol and hydroquinone shows a linear concentration range of 8 × 10-6 to 1.6 × 10-4 mol/L with a correlation coefficient of 0.998 (or 0.994) and the calculated limit of detection is 4 × 10-6 mol/L at a signal-to-noise ratio of 3. The modified electrode in simulated water samples for the determination of hydroquinone and catechol have satisfactory results and recoveries were 97.3-104.2 %.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Ivanova, M. Stefova and F. Chinnici, J. Serbian Chem. Soc., 75, 45 (2010).
- R. Larcher, G. Nicolini, C. Puecher, D. Bertoldi, S. Moser and G. Favaro, Anal. Chim. Acta, 582, 55 (2007); doi:10.1016/j.aca.2006.08.056.
- E. Hopmann and M. Minceva, J. Chromatogr. A, 1229, 140 (2012); doi:10.1016/j.chroma.2011.12.102.
- B. Pérez López and A. Merkoci, Analyst, 134, 60 (2009); doi:10.1039/b808387h.
- L.J. Liu, F. Zhang, F.N. Xi and X.F. Lin, Biosens. Bioelectron., 24, 306 (2008); doi:10.1016/j.bios.2008.04.003.
- L.J. Ma, Z.H. Wang and Q.M. Li, Analyst, 137, 432 (2011); doi:10.1039/c1an15865a.
- S.J. Li, Y. Xing and G.F. Wang, Mikrochim. Acta, 176, 163 (2012); doi:10.1007/s00604-011-0709-x.
- R.C.S. Luz, F.S. Damos, A.A. Tanaka and L.T. Kubota, Sens. Actuators B, 114, 1019 (2006); doi:10.1016/j.snb.2005.07.063.
- M.M. Ardakani, P. Rahimi, P.E. Karami, H.R. Zare and H. Naeimi, Sens. Actuators B, 123, 763 (2007); doi:10.1016/j.snb.2006.10.015.
- G.-R. Xu, Y.P. Zhang, J.Z. Tao, S. Kim and Z.-U. Bae, Electroanalysis, 19, 1085 (2007); doi:10.1002/elan.200603826.
- D. Oukil, L. Makhloufi and B. Saidani, Sens. Actuators B, 123, 1083 (2007); doi:10.1016/j.snb.2006.11.014.
References
V. Ivanova, M. Stefova and F. Chinnici, J. Serbian Chem. Soc., 75, 45 (2010).
R. Larcher, G. Nicolini, C. Puecher, D. Bertoldi, S. Moser and G. Favaro, Anal. Chim. Acta, 582, 55 (2007); doi:10.1016/j.aca.2006.08.056.
E. Hopmann and M. Minceva, J. Chromatogr. A, 1229, 140 (2012); doi:10.1016/j.chroma.2011.12.102.
B. Pérez López and A. Merkoci, Analyst, 134, 60 (2009); doi:10.1039/b808387h.
L.J. Liu, F. Zhang, F.N. Xi and X.F. Lin, Biosens. Bioelectron., 24, 306 (2008); doi:10.1016/j.bios.2008.04.003.
L.J. Ma, Z.H. Wang and Q.M. Li, Analyst, 137, 432 (2011); doi:10.1039/c1an15865a.
S.J. Li, Y. Xing and G.F. Wang, Mikrochim. Acta, 176, 163 (2012); doi:10.1007/s00604-011-0709-x.
R.C.S. Luz, F.S. Damos, A.A. Tanaka and L.T. Kubota, Sens. Actuators B, 114, 1019 (2006); doi:10.1016/j.snb.2005.07.063.
M.M. Ardakani, P. Rahimi, P.E. Karami, H.R. Zare and H. Naeimi, Sens. Actuators B, 123, 763 (2007); doi:10.1016/j.snb.2006.10.015.
G.-R. Xu, Y.P. Zhang, J.Z. Tao, S. Kim and Z.-U. Bae, Electroanalysis, 19, 1085 (2007); doi:10.1002/elan.200603826.
D. Oukil, L. Makhloufi and B. Saidani, Sens. Actuators B, 123, 1083 (2007); doi:10.1016/j.snb.2006.11.014.