Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Dynamics of Electron Transfer Reaction of Trioxosulfate(IV) Ion with Dinuclear Iron(III)-Salen Complex in Perchloric Acid Medium
Corresponding Author(s) : Oguejiofo T. Ujam
Asian Journal of Chemistry,
Vol. 27 No. 4 (2015): Vol 27 Issue 4
Abstract
The kinetics of oxidation of trioxosulfate(IV) ion, SO32-, by [(Fe(salen))2adi], was investigated in aqueous perchloric acid medium. Stoichiometric results indicate that one mole [(Fe(salen))2adi] was reduced per two moles SO32- oxidized. Under pseudo-first order conditions of SO32- being above 20-fold excess of concentration of the oxidant, observed rates were invariant with respect to increase in concentration. Pseudo-first order rate constants were within (1.68 ± 0.003) × 103 s-1 implying zeroth order dependence of rate on [SO32-] and first order dependence on concentration of the oxidant. The rate of reaction increased with increase in [H+], was unaffected by change in ionic strength and decreased with increase in dielectric constant of the reaction medium. Addition of small amounts of AcO- and Mg2+ ions did not catalyze the reaction. A least squares fit of rate against [H+] was linear (r2 = 0.986) and with intercept indicating that oxidation of SO32- followed two parallel paths. The reaction was analyzed on the basis of a proton-coupled outer-sphere electron transfer mechanism.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.J. Kennedy, K.S. Murray, P.R. Zwack, E. Horn, M.R. Snow and E.R.T. Tiekink, Proc. Indian Acad. Sci. (Chem. Sci.), 98, 99 (1987).
- M. Dusek, V. Petricek, J. Kamenicek and Z. Sindelar, Acta Crystallogr. C, 48, 1579 (1992); doi:10.1107/S0108270192000982.
- W. Chiang, D. Vanengen and M.E. Thompson, Polyhedron, 15, 2369 (1996); doi:10.1016/0277-5387(95)00515-3.
- A. Prakash, M.P. Gangwar and K.K. Singh, J. Dev. Biol. Tissue Eng., 3, 13 (2011).
- R.E. Stenkamp, L.C. Sieker and L.H. Jensen, J. Am. Chem. Soc., 106, 618 (1984); doi:10.1021/ja00315a027.
- S.J. Lippard, Angew. Chem., 27, 344 (1988); doi:10.1002/anie.198803441.
- D.M. Kurtz Jr, Chem. Rev., 90, 585 (1990); doi:10.1021/cr00102a002.
- S. Sheriff, W.A. Hendrickson and J.L. Smith, J. Mol. Biol., 197, 273 (1987); doi:10.1016/0022-2836(87)90124-0.
- C.T. Zeyreka, A. Elmalib and Y. Elermanb, Z. Naturforsch., 60b, 940 (2005).
- K.I. Ansari, J.D. Grant, G.A. Woldemariam, S. Kasiri and S.S. Mandal, Org. Biomol. Chem., 7, 926 (2009); doi:10.1039/b816858j.
- G.A. Woldemariam and S.S. Mandal, J. Inorg. Biochem., 102, 740 (2008); doi:10.1016/j.jinorgbio.2007.11.008.
- Z. Smékal, F. Brezina, Z. Sindelar, R. Klicka and M. Nadvornik, Transition Met. Chem., 21, 49 (1996); doi:10.1007/BF00166012.
- S. Atiga, P.O. Ukoha, O.T. Ujam and O.C. Okpareke, Transition Met. Chem., 39, 189 (2014); doi:10.1007/s11243-013-9788-3.
- M. Tanaka, M. Kitaoka, H. Okawa and S. Kida, Bull. Chem. Soc. Jpn., 49, 2469 (1976); doi:10.1246/bcsj.49.2469.
- P.O. Ukoha and J.F. Iyun, J. Chem. Soc. Nig., 27, 119 (2002).
- P.O. Ukoha, C. Alioke, J.N. Asegbeloyin and O.T. Ujam, J. Chem. Soc. Nig., 35, 163 (2010).
- M.W. Lister and P. Rosenblum, Can. J. Chem., 41, 2727 (1963); doi:10.1139/v63-402.
- U. Chandrawat, A. Prakash and R.N. Mehrotra, Can. J. Chem., 73, 1531 (1995); doi:10.1139/v95-190.
- N.M. Greenwood and A. Earnshaw, Chemistry of Elements, Elsevier Bulterworth-Heinemann, Oxford (2003).
- W.C.E. Higginson and J.W. Marshall, J. Chem. Soc., 447 (1957); doi:10.1039/jr9570000447.
- C. Brandt and R. Van Eldik, Atmos. Environ., 31, 4247 (1997); doi:10.1016/S1352-2310(97)00284-7.
- C. Brandt and R. van Eldik, Chem. Rev., 95, 119 (1995); doi:10.1021/cr00033a006.
- I. Fábián and V. Csordás, Adv. Inorg. Chem., 54, 395 (2003); doi:10.1016/S0898-8838(03)54008-9.
- O.A. Babatude and J.F. Iyun, Eur. J. Sci. Res., 26, 406 (2009).
- M. Ali, S.K. Saha and P. Banerjee, J. Chem. Soc., Dalton Trans., 187 (1990); doi:10.1039/dt9900000187.
- G.P. Haight Jr, E. Perchonock, F. Emmenegger and G. Gordon, J. Am. Chem. Soc., 87, 3835 (1965); doi:10.1021/ja01095a009.
- R.E. Connick, T.M. Tam and E. Von Deuster, Inorg. Chem., 21, 103 (1982); doi:10.1021/ic00131a020.
- D.A. Horner and R.E. Connick, Inorg. Chem., 25, 2414 (1986); doi:10.1021/ic00234a026.
- S.O. Idris, J.F. Iyun and E.B. Agabji, Chem. Class. J., 2, 85 (2005).
- F. Uddin and Z. Khalid, J. Islam. Acad. Sci., 5, 237 (1992).
- S.V. Rosokha and J.K. Kochi, J. Am. Chem. Soc., 123, 8985 (2001); doi:10.1021/ja010859w.
- H.A. Ewais, Egypt. J. Chem., 47, 555 (2004).
- A. McAuley and U.D. Gomwalk, J. Chem. Soc. A, 19, 977 (1969); doi:10.1039/j19690000977.
- S.J. Waygood and W.J. McElroy, J. Chem. Soc., Faraday Trans., 88, 1525 (1992); doi:10.1039/ft9928801525.
- R.O.C. Norman and P.M. Storey, J. Chem. Soc. B, 1009 (1971); doi:10.1039/j29710001009.
References
B.J. Kennedy, K.S. Murray, P.R. Zwack, E. Horn, M.R. Snow and E.R.T. Tiekink, Proc. Indian Acad. Sci. (Chem. Sci.), 98, 99 (1987).
M. Dusek, V. Petricek, J. Kamenicek and Z. Sindelar, Acta Crystallogr. C, 48, 1579 (1992); doi:10.1107/S0108270192000982.
W. Chiang, D. Vanengen and M.E. Thompson, Polyhedron, 15, 2369 (1996); doi:10.1016/0277-5387(95)00515-3.
A. Prakash, M.P. Gangwar and K.K. Singh, J. Dev. Biol. Tissue Eng., 3, 13 (2011).
R.E. Stenkamp, L.C. Sieker and L.H. Jensen, J. Am. Chem. Soc., 106, 618 (1984); doi:10.1021/ja00315a027.
S.J. Lippard, Angew. Chem., 27, 344 (1988); doi:10.1002/anie.198803441.
D.M. Kurtz Jr, Chem. Rev., 90, 585 (1990); doi:10.1021/cr00102a002.
S. Sheriff, W.A. Hendrickson and J.L. Smith, J. Mol. Biol., 197, 273 (1987); doi:10.1016/0022-2836(87)90124-0.
C.T. Zeyreka, A. Elmalib and Y. Elermanb, Z. Naturforsch., 60b, 940 (2005).
K.I. Ansari, J.D. Grant, G.A. Woldemariam, S. Kasiri and S.S. Mandal, Org. Biomol. Chem., 7, 926 (2009); doi:10.1039/b816858j.
G.A. Woldemariam and S.S. Mandal, J. Inorg. Biochem., 102, 740 (2008); doi:10.1016/j.jinorgbio.2007.11.008.
Z. Smékal, F. Brezina, Z. Sindelar, R. Klicka and M. Nadvornik, Transition Met. Chem., 21, 49 (1996); doi:10.1007/BF00166012.
S. Atiga, P.O. Ukoha, O.T. Ujam and O.C. Okpareke, Transition Met. Chem., 39, 189 (2014); doi:10.1007/s11243-013-9788-3.
M. Tanaka, M. Kitaoka, H. Okawa and S. Kida, Bull. Chem. Soc. Jpn., 49, 2469 (1976); doi:10.1246/bcsj.49.2469.
P.O. Ukoha and J.F. Iyun, J. Chem. Soc. Nig., 27, 119 (2002).
P.O. Ukoha, C. Alioke, J.N. Asegbeloyin and O.T. Ujam, J. Chem. Soc. Nig., 35, 163 (2010).
M.W. Lister and P. Rosenblum, Can. J. Chem., 41, 2727 (1963); doi:10.1139/v63-402.
U. Chandrawat, A. Prakash and R.N. Mehrotra, Can. J. Chem., 73, 1531 (1995); doi:10.1139/v95-190.
N.M. Greenwood and A. Earnshaw, Chemistry of Elements, Elsevier Bulterworth-Heinemann, Oxford (2003).
W.C.E. Higginson and J.W. Marshall, J. Chem. Soc., 447 (1957); doi:10.1039/jr9570000447.
C. Brandt and R. Van Eldik, Atmos. Environ., 31, 4247 (1997); doi:10.1016/S1352-2310(97)00284-7.
C. Brandt and R. van Eldik, Chem. Rev., 95, 119 (1995); doi:10.1021/cr00033a006.
I. Fábián and V. Csordás, Adv. Inorg. Chem., 54, 395 (2003); doi:10.1016/S0898-8838(03)54008-9.
O.A. Babatude and J.F. Iyun, Eur. J. Sci. Res., 26, 406 (2009).
M. Ali, S.K. Saha and P. Banerjee, J. Chem. Soc., Dalton Trans., 187 (1990); doi:10.1039/dt9900000187.
G.P. Haight Jr, E. Perchonock, F. Emmenegger and G. Gordon, J. Am. Chem. Soc., 87, 3835 (1965); doi:10.1021/ja01095a009.
R.E. Connick, T.M. Tam and E. Von Deuster, Inorg. Chem., 21, 103 (1982); doi:10.1021/ic00131a020.
D.A. Horner and R.E. Connick, Inorg. Chem., 25, 2414 (1986); doi:10.1021/ic00234a026.
S.O. Idris, J.F. Iyun and E.B. Agabji, Chem. Class. J., 2, 85 (2005).
F. Uddin and Z. Khalid, J. Islam. Acad. Sci., 5, 237 (1992).
S.V. Rosokha and J.K. Kochi, J. Am. Chem. Soc., 123, 8985 (2001); doi:10.1021/ja010859w.
H.A. Ewais, Egypt. J. Chem., 47, 555 (2004).
A. McAuley and U.D. Gomwalk, J. Chem. Soc. A, 19, 977 (1969); doi:10.1039/j19690000977.
S.J. Waygood and W.J. McElroy, J. Chem. Soc., Faraday Trans., 88, 1525 (1992); doi:10.1039/ft9928801525.
R.O.C. Norman and P.M. Storey, J. Chem. Soc. B, 1009 (1971); doi:10.1039/j29710001009.