Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation of NiS2 Nanoparticles under Microwave Irradiation and Catalytic Reduction of 4-Nitrophenol
Corresponding Author(s) : Weon Bae Ko
Asian Journal of Chemistry,
Vol. 27 No. 4 (2015): Vol 27 Issue 4
Abstract
Nickel disulfide nanoparticles were synthesized from NiCl2·6H2O and Na2S2O3·5H2O under microwave irradiation. The nickel disulfide nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and UV-visible spectrophotometry. Nickel disulfide nanoparticles were used as a catalyst for the reduction of 4-nitrophenol to 4-aminophenol. The resulting product was confirmed by UV-visible spectrophotometry.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I.J. Ferrer and C. Sánchez, J. Mater. Process. Technol., 92-93, 239 (1999); doi:10.1016/S0924-0136(99)00172-7.
- D.L. Leslie-Pelecky and R.D. Rieke, Chem. Mater., 8, 1770 (1996); doi:10.1021/cm960077f.
- J.Y. Ying, Chem. Eng. Sci., 61, 1540 (2006); doi:10.1016/j.ces.2005.08.021.
- E.C. Linganiso, S.D. Mhlanga, N.J. Coville and B.W. Mwakikunga, J. Alloys Comp., 552, 345 (2013); doi:10.1016/j.jallcom.2012.10.102.
- A. Olivas, I. Villalpando, S. Sepúlveda, O. Pérez and S. Fuentes, Mater. Lett., 61, 4336 (2007); doi:10.1016/j.matlet.2007.01.100.
- G. An, L. Chenguang, Y. Hou, X. Zhang and Y. Liu, Mater. Lett., 62, 2643 (2008); doi:10.1016/j.matlet.2008.01.005.
- D. Mondal, G. Villemure, G. Li, C. Song, J. Zhang, R. Hui, J. Chen and C. Fairbridge, Appl. Catal. A, 450, 230 (2013); doi:10.1016/j.apcata.2012.10.030.
- J.M. Honig and J. Spalek, Chem. Mater., 10, 2910 (1998); doi:10.1021/cm9803509.
- X.H. Chen and R. Fan, Chem. Mater., 13, 802 (2001); doi:10.1021/cm000517+.
- A. Fujimori, K. Mamiya, T. Mizokawa, T. Miyadai, T. Sekiguchi, H. Takahashi, N. Môri and S. Suga, Phys. Rev. B, 54, 16329 (1996); doi:10.1103/PhysRevB.54.16329.
- Q. Xuefeng, L. Yadong, X. Yi and Q. Yitai, Mater. Chem. Phys., 66, 97 (2000); doi:10.1016/S0254-0584(00)00269-8.
- Y.-W. Chiang, A.J. Costa-Filho, B. Baird and J.H. Freed, J. Phys. Chem., 115, 10462 (2011); doi:10.1021/jp2016243.
- J.H. Lee, B.E. Park, Y.M. Lee, S.H. Hwang and W.B. Ko, Curr. Appl. Phys., 9, e152 (2009); doi:10.1016/j.cap.2008.12.048.
- M.N. Nadagouda, T.F. Speth and R.S. Varma, Acc. Chem. Res., 44, 469 (2011); doi:10.1021/ar1001457.
- A. Henglein, Chem. Rev., 89, 1861 (1989); doi:10.1021/cr00098a010.
- W.P. Halperin, Rev. Mod. Phys., 58, 533 (1986); doi:10.1103/RevModPhys.58.533.
- S.D. Oh, K.R. Yoon, S.H. Choi, A. Gopalan, K.P. Lee, S.H. Sohn, H.D. Kang and I.S. Choi, J. Non-Cryst. Solids, 352, 355 (2006); doi:10.1016/j.jnoncrysol.2005.12.006.
- S.-D. Oh, B.-K. So, S.-H. Choi, A. Gopalan, K.-P. Lee, K. Ro Yoon and I.S. Choi, Mater. Lett., 59, 1121 (2005); doi:10.1016/j.matlet.2004.10.080.
- J.H. Lee, S.K. Hong and W.B. Ko, J. Ind. Eng. Chem., 16, 564 (2010); doi:10.1016/j.jiec.2010.03.019.
References
I.J. Ferrer and C. Sánchez, J. Mater. Process. Technol., 92-93, 239 (1999); doi:10.1016/S0924-0136(99)00172-7.
D.L. Leslie-Pelecky and R.D. Rieke, Chem. Mater., 8, 1770 (1996); doi:10.1021/cm960077f.
J.Y. Ying, Chem. Eng. Sci., 61, 1540 (2006); doi:10.1016/j.ces.2005.08.021.
E.C. Linganiso, S.D. Mhlanga, N.J. Coville and B.W. Mwakikunga, J. Alloys Comp., 552, 345 (2013); doi:10.1016/j.jallcom.2012.10.102.
A. Olivas, I. Villalpando, S. Sepúlveda, O. Pérez and S. Fuentes, Mater. Lett., 61, 4336 (2007); doi:10.1016/j.matlet.2007.01.100.
G. An, L. Chenguang, Y. Hou, X. Zhang and Y. Liu, Mater. Lett., 62, 2643 (2008); doi:10.1016/j.matlet.2008.01.005.
D. Mondal, G. Villemure, G. Li, C. Song, J. Zhang, R. Hui, J. Chen and C. Fairbridge, Appl. Catal. A, 450, 230 (2013); doi:10.1016/j.apcata.2012.10.030.
J.M. Honig and J. Spalek, Chem. Mater., 10, 2910 (1998); doi:10.1021/cm9803509.
X.H. Chen and R. Fan, Chem. Mater., 13, 802 (2001); doi:10.1021/cm000517+.
A. Fujimori, K. Mamiya, T. Mizokawa, T. Miyadai, T. Sekiguchi, H. Takahashi, N. Môri and S. Suga, Phys. Rev. B, 54, 16329 (1996); doi:10.1103/PhysRevB.54.16329.
Q. Xuefeng, L. Yadong, X. Yi and Q. Yitai, Mater. Chem. Phys., 66, 97 (2000); doi:10.1016/S0254-0584(00)00269-8.
Y.-W. Chiang, A.J. Costa-Filho, B. Baird and J.H. Freed, J. Phys. Chem., 115, 10462 (2011); doi:10.1021/jp2016243.
J.H. Lee, B.E. Park, Y.M. Lee, S.H. Hwang and W.B. Ko, Curr. Appl. Phys., 9, e152 (2009); doi:10.1016/j.cap.2008.12.048.
M.N. Nadagouda, T.F. Speth and R.S. Varma, Acc. Chem. Res., 44, 469 (2011); doi:10.1021/ar1001457.
A. Henglein, Chem. Rev., 89, 1861 (1989); doi:10.1021/cr00098a010.
W.P. Halperin, Rev. Mod. Phys., 58, 533 (1986); doi:10.1103/RevModPhys.58.533.
S.D. Oh, K.R. Yoon, S.H. Choi, A. Gopalan, K.P. Lee, S.H. Sohn, H.D. Kang and I.S. Choi, J. Non-Cryst. Solids, 352, 355 (2006); doi:10.1016/j.jnoncrysol.2005.12.006.
S.-D. Oh, B.-K. So, S.-H. Choi, A. Gopalan, K.-P. Lee, K. Ro Yoon and I.S. Choi, Mater. Lett., 59, 1121 (2005); doi:10.1016/j.matlet.2004.10.080.
J.H. Lee, S.K. Hong and W.B. Ko, J. Ind. Eng. Chem., 16, 564 (2010); doi:10.1016/j.jiec.2010.03.019.