Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption Mechanism of Estrogens on Soil Studies Based on Density Functional Theory and Quantitative Structure-Activity Relationship Model
Corresponding Author(s) : Wenjin Zhao
Asian Journal of Chemistry,
Vol. 27 No. 4 (2015): Vol 27 Issue 4
Abstract
The optimum molecular geometries of estrogens (estrone, 17b-estradiol, estriol, 17a-ethynylestradiol and bisphenol-A) were carried out through the B3LYP method of density functional theory (DFT) using 6-31G(d) basis sets and 35 kinds of quantum chemical parameters, such as energy, dipole moment, polarizability and hyperpolarizability etc., were calculated based on optimal geometries. The quantitative structure-activity relationship (QSAR) model between the maximum adsorption capacity of estrogens on soil and the estrogens' quantum chemical parameters was established to reveal the adsorption mechanism of estrogens. It was found that the adsorption process of the estrogens on soil was mainly controlled by physical interaction and the polarizability of estrogens was the most principal factor influencing the adsorption of estrogens on soil. The maximum adsorption capacity of bisphenol-A was larger than other estrogens and this could be explained by charge distribution. The charge distribution profiles of estrogen molecules showed that the estrogens with more homogeneous charge distribution possessed stronger adsorption ability on soil. The study could provide a theoretical guidance for removing the estrogens using adsorption method.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Colborn, F.S. vom Saal and A.M. Soto, Environ. Health Perspect., 101, 378 (1993); doi:10.1289/ehp.93101378.
- M. Yokosuka, R. Ohtani-Kaneko, K. Yamashita, D. Muraoka, Y. Kuroda and C. Watanabe, Toxicol. In Vitro, 22, 1 (2008); doi:10.1016/j.tiv.2007.07.003.
- D. Terri, B. Sue, B. Aake, K. Robert and V.K. Glen, World Health Organization: Global Assessment of the State-of-the-Science of Endocrine Disruptors, Geneva, pp. 4/33-4/50 (2002).
- C.A. Staples, P.B. Dome, G.M. Klecka, S.T. Oblock and L.R. Harris, Chemosphere, 36, 2149 (1998); doi:10.1016/S0045-6535(97)10133-3.
- Y.P. Zhang and J.L. Zhou, Water Res., 39, 3991 (2005); doi:10.1016/j.watres.2005.07.019.
- O. Braga, G.A. Smythe, A.I. Schäfer and A.J. Feitz, Environ. Sci. Technol., 39, 3351 (2005); doi:10.1021/es0501767.
- A. Mohammed, Y.S. Yang, X.Q. Du, M.X. Yang and A. Musa, J. Jilin Univ. (Earth Sci. Ed.), 43, 574 (2013).
- Y. Li, C. Zhang, J.L. Liu, X.P. Li and X.J. Wang, Chem. J. Chinese Univ., 34, 634 (2013).
- D. Nori-Shargh, F.R. Ghanizadeh, M.M. Hosseini and F. Deyhimi, J. Mol. Struct.-Theochem., 808, 135 (2007); doi:10.1016/j.theochem.2007.01.001.
- J.E. Lee, W. Choi and B.J. Mhin, J. Phys. Chem. A, 107, 2693 (2003); doi:10.1021/jp027133m.
- X.W. Li, E. Shibata and T. Nakamura, J. Chem. Eng. Data, 48, 727 (2003); doi:10.1021/je0256582.
- J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 105, 2999 (2005); doi:10.1021/cr9904009.
- J.L. Liu, Study on the Adsorption Behaviors and Biodegradation of Estrogen Chemicals in Soil System, North China Electric Power University, Beijing, China (2012).
- C. Hansch, A. Leo and R.W. Taft, Chem. Rev., 91, 165 (1991); doi:10.1021/cr00002a004.
- H. Gao, J.A. Katzenellenbogen, R. Garg and C. Hansch, Chem. Rev., 99, 723 (1999); doi:10.1021/cr980018g.
- W.J. Hehre, L. Radom, P.R. Schleyer and J.A. Pople, ab initio Mole-cular Orbital Theory, John Wiley & Sons, New York, p. 227 (1986).
- E.V. Rokhina and R.P.S. Suri, Sci. Total Environ., 417-418, 280 (2012); doi:10.1016/j.scitotenv.2011.12.008.
- C. Kubli-Garfias, J. Mol. Struc-Theochem., 452, 175 (1998); doi:10.1016/S0166-1280(98)00149-3.
- P.B. Nagabalasubramanian, M. Karabacak and S. Periandy, Spectrochim. Acta A, 82, 169 (2011); doi:10.1016/j.saa.2011.07.029.
References
T. Colborn, F.S. vom Saal and A.M. Soto, Environ. Health Perspect., 101, 378 (1993); doi:10.1289/ehp.93101378.
M. Yokosuka, R. Ohtani-Kaneko, K. Yamashita, D. Muraoka, Y. Kuroda and C. Watanabe, Toxicol. In Vitro, 22, 1 (2008); doi:10.1016/j.tiv.2007.07.003.
D. Terri, B. Sue, B. Aake, K. Robert and V.K. Glen, World Health Organization: Global Assessment of the State-of-the-Science of Endocrine Disruptors, Geneva, pp. 4/33-4/50 (2002).
C.A. Staples, P.B. Dome, G.M. Klecka, S.T. Oblock and L.R. Harris, Chemosphere, 36, 2149 (1998); doi:10.1016/S0045-6535(97)10133-3.
Y.P. Zhang and J.L. Zhou, Water Res., 39, 3991 (2005); doi:10.1016/j.watres.2005.07.019.
O. Braga, G.A. Smythe, A.I. Schäfer and A.J. Feitz, Environ. Sci. Technol., 39, 3351 (2005); doi:10.1021/es0501767.
A. Mohammed, Y.S. Yang, X.Q. Du, M.X. Yang and A. Musa, J. Jilin Univ. (Earth Sci. Ed.), 43, 574 (2013).
Y. Li, C. Zhang, J.L. Liu, X.P. Li and X.J. Wang, Chem. J. Chinese Univ., 34, 634 (2013).
D. Nori-Shargh, F.R. Ghanizadeh, M.M. Hosseini and F. Deyhimi, J. Mol. Struct.-Theochem., 808, 135 (2007); doi:10.1016/j.theochem.2007.01.001.
J.E. Lee, W. Choi and B.J. Mhin, J. Phys. Chem. A, 107, 2693 (2003); doi:10.1021/jp027133m.
X.W. Li, E. Shibata and T. Nakamura, J. Chem. Eng. Data, 48, 727 (2003); doi:10.1021/je0256582.
J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 105, 2999 (2005); doi:10.1021/cr9904009.
J.L. Liu, Study on the Adsorption Behaviors and Biodegradation of Estrogen Chemicals in Soil System, North China Electric Power University, Beijing, China (2012).
C. Hansch, A. Leo and R.W. Taft, Chem. Rev., 91, 165 (1991); doi:10.1021/cr00002a004.
H. Gao, J.A. Katzenellenbogen, R. Garg and C. Hansch, Chem. Rev., 99, 723 (1999); doi:10.1021/cr980018g.
W.J. Hehre, L. Radom, P.R. Schleyer and J.A. Pople, ab initio Mole-cular Orbital Theory, John Wiley & Sons, New York, p. 227 (1986).
E.V. Rokhina and R.P.S. Suri, Sci. Total Environ., 417-418, 280 (2012); doi:10.1016/j.scitotenv.2011.12.008.
C. Kubli-Garfias, J. Mol. Struc-Theochem., 452, 175 (1998); doi:10.1016/S0166-1280(98)00149-3.
P.B. Nagabalasubramanian, M. Karabacak and S. Periandy, Spectrochim. Acta A, 82, 169 (2011); doi:10.1016/j.saa.2011.07.029.