Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Catalytic Performance of Yb3+, Er3+ Doped Titanium Dioxide
Corresponding Author(s) : Donghua Hu
Asian Journal of Chemistry,
Vol. 27 No. 4 (2015): Vol 27 Issue 4
Abstract
Titanium dioxide (TiO2) nano-materials have been widely applied into solving the environment and energy problems. However, common titanium dioxide materials can only absorb the ultraviolet light in the solar energy. In view of the unique 4f and empty 5d orbitals, rare earth element own special optical properties like Yb can convert the energy of infrared light into visible light which may be absorbed by Er in the catalytic process. Herein, we successfully doped the rare earth elements of Yb and Er into the TiO2 nano-material. The photo-catalytic activity of related titanium dioxide nano-material was enhanced through the excitation by visible and infrared light.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Fujishima and K. Honda, Nature, 238, 37 (1972); doi:10.1038/238037a0.
- M. Graetzel, Nature, 414, 338 (2001); doi:10.1038/35104607.
- A. Hagfeldt and M. Graetzel, Chem. Rev., 95, 49 (1995); doi:10.1021/cr00033a003.
- R. Levinson, P. Berdahl and H. Akbari, Sol. Energy Mater. Sol. Cells, 89, 319 (2005); doi:10.1016/j.solmat.2004.11.012.
- W. Choi, A. Termin and M.R. Hoffmann, J. Phys. Chem., 98, 13669 (1994); doi:10.1021/j100102a038.
- C.Y. Huang, L.C. Zhang and X.H. Li, Chin. J. Catal., 29, 163 (2008).
- Y.Y. Yu, M.Y. Yu, Y. Zhang, W.-W. Sun and Y. Liu, Chinese J. Inorg. Chem., 29, 1657 (2013).
- R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 293, 269 (2001); doi:10.1126/science.1061051.
- A.J. Silversmith, W. Lenth and R.M. Macfarlane, Appl. Phys. Lett., 51, 1977 (1987); doi:10.1063/1.98316.
- Z. Zulkarnain, Y.L. Chong and Z.H. Mohd, Asian J. Chem., 17, 1717 (2005).
- A. Patra, C.S. Friend, R. Kapoor and P.N. Prasad, J. Phys. Chem. B, 106, 1909 (2002); doi:10.1021/jp013576z.
- F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini and M. Bettinelli, J. Phys. Chem. B, 106, 5622 (2002); doi:10.1021/jp020256m.
- F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini and M. Bettinelli, J. Phys. Chem. B, 107, 1107 (2003); doi:10.1021/jp0218692.
- R.K. Jia, Y.M. Liu and D.L. He, Chem. J. Chin. Univ., 25, 1306 (2004).
References
A. Fujishima and K. Honda, Nature, 238, 37 (1972); doi:10.1038/238037a0.
M. Graetzel, Nature, 414, 338 (2001); doi:10.1038/35104607.
A. Hagfeldt and M. Graetzel, Chem. Rev., 95, 49 (1995); doi:10.1021/cr00033a003.
R. Levinson, P. Berdahl and H. Akbari, Sol. Energy Mater. Sol. Cells, 89, 319 (2005); doi:10.1016/j.solmat.2004.11.012.
W. Choi, A. Termin and M.R. Hoffmann, J. Phys. Chem., 98, 13669 (1994); doi:10.1021/j100102a038.
C.Y. Huang, L.C. Zhang and X.H. Li, Chin. J. Catal., 29, 163 (2008).
Y.Y. Yu, M.Y. Yu, Y. Zhang, W.-W. Sun and Y. Liu, Chinese J. Inorg. Chem., 29, 1657 (2013).
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 293, 269 (2001); doi:10.1126/science.1061051.
A.J. Silversmith, W. Lenth and R.M. Macfarlane, Appl. Phys. Lett., 51, 1977 (1987); doi:10.1063/1.98316.
Z. Zulkarnain, Y.L. Chong and Z.H. Mohd, Asian J. Chem., 17, 1717 (2005).
A. Patra, C.S. Friend, R. Kapoor and P.N. Prasad, J. Phys. Chem. B, 106, 1909 (2002); doi:10.1021/jp013576z.
F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini and M. Bettinelli, J. Phys. Chem. B, 106, 5622 (2002); doi:10.1021/jp020256m.
F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini and M. Bettinelli, J. Phys. Chem. B, 107, 1107 (2003); doi:10.1021/jp0218692.
R.K. Jia, Y.M. Liu and D.L. He, Chem. J. Chin. Univ., 25, 1306 (2004).