Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Hydrogenation of Acetic Acid Over PtSn/Al2O3 Catalyst: Effect of Shaping Method, Kinetics and Stability
Corresponding Author(s) : Haitao Zhang
Asian Journal of Chemistry,
Vol. 27 No. 4 (2015): Vol 27 Issue 4
Abstract
The hydrogenation of acetic acid to ethanol is a promising technology for the mass production of ethanol. Two series of PtSn/Al2O3 catalysts with commercial size were prepared and shaped by different method and tested in the hydrogenation of acetic acid at 275 °C, 2 MPa, LHSV (liquid hourly space velocity) = 0.6 h-1 and n(H2)/n(CH3COOH) = 12.5. The effect of operation conditions on the performance of one of the catalysts, which shows the highest selectivity of ethanol, was also investigated. After checking the catalyst internal and external diffusion resistance, kinetics of the powdered catalyst was carried out at the following conditions: catalyst 1 g (100-120 mesh), temperature 235-275 °C, pressures 0.5-4.5 MPa, LHSV 0.73-2.18 h-1 and n(H2)/n(CH3COOH) 2.5-12.5. After that, a 30-days stability test was performed. Kinetics equations derived from a Langmuir-Hinshelwood-type mechanism were established and turn out to be reliable for the hydrogenation of acetic acid over PtSn/Al2O3 catalyst.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Berndes, C. Azar, T. Kåberger and D. Abrahamson, Biomass Bioenergy, 20, 371 (2001); doi:10.1016/S0961-9534(01)00002-2.
- A.E. Farrell, R.J. Plevin, B.T. Turner, A.D. Jones, M. O’Hare and D.M. Kammen, Science, 311, 506 (2006); doi:10.1126/science.1121416.
- V. Subramani and S.K. Gangwal, Energy Fuels, 22, 814 (2008); doi:10.1021/ef700411x.
- B.D. Solomon, J.R. Barnes and K.E. Halvorsen, Biomass Bioenergy, 31, 416 (2007); doi:10.1016/j.biombioe.2007.01.023.
- C.M. Fougret and W.F. Hölderich, Appl. Catal. A, 207, 295 (2001); doi:10.1016/S0926-860X(00)00666-9.
- J.R. Rostrup-Nielsen, Science, 308, 1421 (2005); doi:10.1126/science.1113354.
- N. Yoneda, S. Kusano, M. Yasui, P. Pujado and S. Wilcher, Appl. Catal. A, 221, 253 (2001); doi:10.1016/S0926-860X(01)00800-6.
- G. Onyestyák, S. Harnos, S. Klébert, M. Stolcová, A. Kaszonyi and D. Kalló, Appl. Catal. A, 464-465, 313 (2013); doi:10.1016/j.apcata.2013.05.042.
- W. Rachmady and M.A. Vannice, J. Catal., 192, 322 (2000); doi:10.1006/jcat.2000.2863.
- W. Rachmady and M.A. Vannice, J. Catal., 209, 87 (2002); doi:10.1006/jcat.2002.3623.
- W. Rachmady and M.A. Vannice, J. Catal., 207, 317 (2002); doi:10.1006/jcat.2002.3556.
- R. Pestman, R.M. Koster, J.A.Z. Pieterse and V.J. Ponec, J. Catal., 168, 255 (1997); doi:10.1006/jcat.1997.1623.
- K. Zhang, H.F. Ma, H.T. Zhang, W.Y. Ying and D.Y. Fang, Catal. Lett., 142, 131 (2012); doi:10.1007/s10562-011-0739-3.
- J.L. Ayastuy, M.P. González-Marcos and M.A. Gutiérrez-Ortiz, Catal. Commun., 12, 895 (2011); doi:10.1016/j.catcom.2011.02.011.
- Z.T. Huang and J.M. Geng, Industrial Catalysis, Chemical Industry Press, Beijing, p.185 (2006).
- G.F. Froment and K. Bischoff, Chemical Reactor Analysis and Design, John Wiley & Sons, Inc., New York, p. 428 (2011).
References
G. Berndes, C. Azar, T. Kåberger and D. Abrahamson, Biomass Bioenergy, 20, 371 (2001); doi:10.1016/S0961-9534(01)00002-2.
A.E. Farrell, R.J. Plevin, B.T. Turner, A.D. Jones, M. O’Hare and D.M. Kammen, Science, 311, 506 (2006); doi:10.1126/science.1121416.
V. Subramani and S.K. Gangwal, Energy Fuels, 22, 814 (2008); doi:10.1021/ef700411x.
B.D. Solomon, J.R. Barnes and K.E. Halvorsen, Biomass Bioenergy, 31, 416 (2007); doi:10.1016/j.biombioe.2007.01.023.
C.M. Fougret and W.F. Hölderich, Appl. Catal. A, 207, 295 (2001); doi:10.1016/S0926-860X(00)00666-9.
J.R. Rostrup-Nielsen, Science, 308, 1421 (2005); doi:10.1126/science.1113354.
N. Yoneda, S. Kusano, M. Yasui, P. Pujado and S. Wilcher, Appl. Catal. A, 221, 253 (2001); doi:10.1016/S0926-860X(01)00800-6.
G. Onyestyák, S. Harnos, S. Klébert, M. Stolcová, A. Kaszonyi and D. Kalló, Appl. Catal. A, 464-465, 313 (2013); doi:10.1016/j.apcata.2013.05.042.
W. Rachmady and M.A. Vannice, J. Catal., 192, 322 (2000); doi:10.1006/jcat.2000.2863.
W. Rachmady and M.A. Vannice, J. Catal., 209, 87 (2002); doi:10.1006/jcat.2002.3623.
W. Rachmady and M.A. Vannice, J. Catal., 207, 317 (2002); doi:10.1006/jcat.2002.3556.
R. Pestman, R.M. Koster, J.A.Z. Pieterse and V.J. Ponec, J. Catal., 168, 255 (1997); doi:10.1006/jcat.1997.1623.
K. Zhang, H.F. Ma, H.T. Zhang, W.Y. Ying and D.Y. Fang, Catal. Lett., 142, 131 (2012); doi:10.1007/s10562-011-0739-3.
J.L. Ayastuy, M.P. González-Marcos and M.A. Gutiérrez-Ortiz, Catal. Commun., 12, 895 (2011); doi:10.1016/j.catcom.2011.02.011.
Z.T. Huang and J.M. Geng, Industrial Catalysis, Chemical Industry Press, Beijing, p.185 (2006).
G.F. Froment and K. Bischoff, Chemical Reactor Analysis and Design, John Wiley & Sons, Inc., New York, p. 428 (2011).