Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fluorescence Spectrometry of Interaction of Acyclovir and Bovine Serum Albumin in Presence of Carbon Nanotubes
Corresponding Author(s) : Xiaoxia Wang
Asian Journal of Chemistry,
Vol. 27 No. 4 (2015): Vol 27 Issue 4
Abstract
The interaction between acyclovir and bovine serum albumin in presence of carbon nanotubes was investigated by fluorescence spectrometry. Testing the fluorescence value of three material mixture by fluorescence spectrophotometer, scanning the synchronous fluorescence spectrum of acyclovir and bovine serum albumin and analyzing the quenching effect. The experimental results showed that fluorescence quenching of acyclovir for bovine serum albumin is mainly static quenching, acyclovir has a main fluorescence quenching effect on the tryptophan of bovine serum albumin and has no impact on the basic conformation of bovine serum albumin. The addition of carbon nanotubes in the binary mixture, the fluorescence quenching effect was more apparent and would become more obvious with the increasing amount of carbon nanotubes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.J. Li, J.J. Ju, T. Pu, J.J. Guo and C.M. Yu, Chem. Prod. Technol., 19, 9 (2012).
- M. Yang, Y. Zou, S.J. Yu and X.H. Li, Anal. Chem., 32, 1237 (2004).
- Q.X. Zhou, Chem. Ind. Eng. Progr., 25, 750 (2006).
- S.S. Li, Progress Chem., 20, 1798 (2008).
- M.D. Meti, S.D. Gunagi, S.T. Nandibewoor and S.A. Chimatadar, Monatsh. Chem., 144, 1253 (2013); doi:10.1007/s00706-013-0933-7.
- S.A. Markarian and M.G. Aznauryan, Mol. Biol. Rep., 39, 7559 (2012); doi:10.1007/s11033-012-1590-3.
- B.S. Liu and X.N. Yan, Chin. J. Lumin., 33, 1018 (2012); doi:10.3788/fgxb20123309.1018.
- L.J. Li, Spectrosc. Spectral Anal., 26, 81 (2006).
- G.W. Aodeng and Y.-C. Jin, Chin. J. Lumin., 32, 404 (2011); doi:10.3788/fgxb20113204.0404.
- B.S. Liu and C.L. Xue, Chin. J. Lumin., 31, 285 (2010).
- B.-S. Liu, J. Wang, C.-L. Xue, C. Yang and Y.-K. Lv, Monatsh. Chem., 143, 401 (2012); doi:10.1007/s00706-011-0593-4.
- S.S. Li, Spectrosc. Spectral Anal., 30, 2689 (2010).
References
J.J. Li, J.J. Ju, T. Pu, J.J. Guo and C.M. Yu, Chem. Prod. Technol., 19, 9 (2012).
M. Yang, Y. Zou, S.J. Yu and X.H. Li, Anal. Chem., 32, 1237 (2004).
Q.X. Zhou, Chem. Ind. Eng. Progr., 25, 750 (2006).
S.S. Li, Progress Chem., 20, 1798 (2008).
M.D. Meti, S.D. Gunagi, S.T. Nandibewoor and S.A. Chimatadar, Monatsh. Chem., 144, 1253 (2013); doi:10.1007/s00706-013-0933-7.
S.A. Markarian and M.G. Aznauryan, Mol. Biol. Rep., 39, 7559 (2012); doi:10.1007/s11033-012-1590-3.
B.S. Liu and X.N. Yan, Chin. J. Lumin., 33, 1018 (2012); doi:10.3788/fgxb20123309.1018.
L.J. Li, Spectrosc. Spectral Anal., 26, 81 (2006).
G.W. Aodeng and Y.-C. Jin, Chin. J. Lumin., 32, 404 (2011); doi:10.3788/fgxb20113204.0404.
B.S. Liu and C.L. Xue, Chin. J. Lumin., 31, 285 (2010).
B.-S. Liu, J. Wang, C.-L. Xue, C. Yang and Y.-K. Lv, Monatsh. Chem., 143, 401 (2012); doi:10.1007/s00706-011-0593-4.
S.S. Li, Spectrosc. Spectral Anal., 30, 2689 (2010).