Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Hydrogen Generation from Sodium Borohydride Catalyzed by Cobalt(II) Acetate
Corresponding Author(s) : Changfeng Yan
Asian Journal of Chemistry,
Vol. 27 No. 4 (2015): Vol 27 Issue 4
Abstract
Sodium borohydride as a hydrogen storage material for portable application has attracted much attention. A newly designed reactor with a toroidal tube distributor has been developed to generate hydrogen from sodium borohydride accelerated by cobalt(II) salts. The effects of the cobalt solution flow rate, the cobalt(II) acetate concentration, as well as the reaction temperature on hydrogen generation are discussed. The newly designed reactor successful reduced the hydrogen generation startup time and improved the water distribution. The results indicate that the startup time is decreased with an increase in (1) the concentration of the cobalt(II) acetate solution, (2) the reactor temperature and (3) the cobalt salt solution flow rate. The hydrogen yield increases with increase in cobalt(II) acetate concentration and reached a maximum at 1 wt %; further increases in the catalyst loading results in a decrease of the hydrogen yield. Furthermore, the hydrogen yields > 99 % is achieved using the novel reactor.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.M. Frank, Alternative Fuels, The Future of Hydrogen, CRC Press, edn. 2 (2008).
- A.D. James and J. Larminie, Fuel Cell Systems Explained, Wiley (2005).
- A.J. Hung, S.F. Tsai, Y.Y. Hsu, J.R. Ku, Y.H. Chen and C.C. Yu, Int. J. Hydrogen Energy, 33, 6205 (2008); doi:10.1016/j.ijhydene.2008.07.109.
- S. Bennici, A. Garron and A. Auroux, Int. J. Hydrogen Energy, 35, 8621 (2010); doi:10.1016/j.ijhydene.2010.05.114.
- S. Murugesan and V. Subramanian, J. Power Sources, 187, 216 (2009); doi:10.1016/j.jpowsour.2008.10.060.
- P. Gislon, G. Monteleone and P.P. Prosini, Int. J. Hydrogen Energy, 34, 929 (2009); doi:10.1016/j.ijhydene.2008.09.105.
- S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, M.T. Kelly, P.J. Petillo and M. Binder, J. Power Sources, 85, 186 (2000); doi:10.1016/S0378-7753(99)00301-8.
- S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, N.C. Spencer, M.T. Kelly, P.J. Petillo and M. Binder, Int. J. Hydrogen Energy, 25, 969 (2000); doi:10.1016/S0360-3199(00)00021-5.
- D. Gervasio, S. Tasic and F. Zenhausern, J. Power Sources, 149, 15 (2005); doi:10.1016/j.jpowsour.2005.01.054.
- A. Pozio, M. De Francesco, G. Monteleone, R. Oronzio, S. Galli, C. D'Angelo and M. Marrucci, Int. J. Hydrogen Energy, 33, 51 (2008); doi:10.1016/j.ijhydene.2007.08.024.
- S. Galli, M. De Francesco, G. Monteleone, R. Oronzio and A. Pozio, Int. J. Hydrogen Energy, 35, 7344 (2010); doi:10.1016/j.ijhydene.2010.03.144.
- H.I. Schlesinger, H.C. Brown, A.E. Finholt, J.R. Gilbreath, H.R. Hoekstra and E.K. Hyde, J. Am. Chem. Soc., 75, 215 (1953); doi:10.1021/ja01097a057.
- YQ. Wang, China Patent, CN03130002.2 (2003).
- O. Akdim, U.B. Demirci, D. Muller and P. Miele, Int. J. Hydrogen Energy, 34, 2631 (2009); doi:10.1016/j.ijhydene.2009.01.077.
References
H.M. Frank, Alternative Fuels, The Future of Hydrogen, CRC Press, edn. 2 (2008).
A.D. James and J. Larminie, Fuel Cell Systems Explained, Wiley (2005).
A.J. Hung, S.F. Tsai, Y.Y. Hsu, J.R. Ku, Y.H. Chen and C.C. Yu, Int. J. Hydrogen Energy, 33, 6205 (2008); doi:10.1016/j.ijhydene.2008.07.109.
S. Bennici, A. Garron and A. Auroux, Int. J. Hydrogen Energy, 35, 8621 (2010); doi:10.1016/j.ijhydene.2010.05.114.
S. Murugesan and V. Subramanian, J. Power Sources, 187, 216 (2009); doi:10.1016/j.jpowsour.2008.10.060.
P. Gislon, G. Monteleone and P.P. Prosini, Int. J. Hydrogen Energy, 34, 929 (2009); doi:10.1016/j.ijhydene.2008.09.105.
S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, M.T. Kelly, P.J. Petillo and M. Binder, J. Power Sources, 85, 186 (2000); doi:10.1016/S0378-7753(99)00301-8.
S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, N.C. Spencer, M.T. Kelly, P.J. Petillo and M. Binder, Int. J. Hydrogen Energy, 25, 969 (2000); doi:10.1016/S0360-3199(00)00021-5.
D. Gervasio, S. Tasic and F. Zenhausern, J. Power Sources, 149, 15 (2005); doi:10.1016/j.jpowsour.2005.01.054.
A. Pozio, M. De Francesco, G. Monteleone, R. Oronzio, S. Galli, C. D'Angelo and M. Marrucci, Int. J. Hydrogen Energy, 33, 51 (2008); doi:10.1016/j.ijhydene.2007.08.024.
S. Galli, M. De Francesco, G. Monteleone, R. Oronzio and A. Pozio, Int. J. Hydrogen Energy, 35, 7344 (2010); doi:10.1016/j.ijhydene.2010.03.144.
H.I. Schlesinger, H.C. Brown, A.E. Finholt, J.R. Gilbreath, H.R. Hoekstra and E.K. Hyde, J. Am. Chem. Soc., 75, 215 (1953); doi:10.1021/ja01097a057.
YQ. Wang, China Patent, CN03130002.2 (2003).
O. Akdim, U.B. Demirci, D. Muller and P. Miele, Int. J. Hydrogen Energy, 34, 2631 (2009); doi:10.1016/j.ijhydene.2009.01.077.