Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave-Assisted Preparation and Optical Property of Reddish-Brown N-Containing ZnO Nanorods
Corresponding Author(s) : Junsheng Liu
Asian Journal of Chemistry,
Vol. 27 No. 4 (2015): Vol 27 Issue 4
Abstract
Reddish-brown N-containing semiconductor ZnO nanorods have been prepared by microwave-assisted aqueous chemical reaction and subsequent heat treatment process. The as-prepared products have been characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and photoluminescence spectrum. The diameter and length of ZnO nanorods are estimated to be 40-60 and 300-500 nm, respectively and the long-radius ratio is about 10:1. According to XPS analysis, the concentration of N in ZnO is calculated to be 9.92 %. Room temperature photoluminescence spectrum shows a strong UV peak at 383 nm and a weak broad orange-red band emission centered at 603 nm. As a multi-functional material, this high N-containing ZnO nanorods may be applied in solar cell, photo-electron device and photocatalyst, etc.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Keis, E. Magnusson, H. Lindstrom, S.E. Lindquist and A. Hagfeldt, Sol. Energy Mater. Solar Cells, 73, 51 (2002); doi:10.1016/S0927-0248(01)00110-6.
- K.-S. Weißenrieder and J. Müller, Thin Solid Films, 300, 30 (1997); doi:10.1016/S0040-6090(96)09471-0.
- K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano and H. Hosono, Science, 300, 1269 (2003); doi:10.1126/science.1083212.
- A. Mclaren, T. Valdes-Solis, G.Q. Li and S.C. Tsang, J. Am. Chem. Soc., 131, 12540 (2009); doi:10.1021/ja9052703.
- H. Hu, X. Huang, C. Deng, X. Chen and Y. Qian, Mater. Chem. Phys., 106, 58 (2007); doi:10.1016/j.matchemphys.2007.05.016.
- W.S. Chen, D.A. Huang, H.C. Chen, T.Y. Shie, C.H. Hsieh, J.D. Liao and C.S. Kuo, Cryst. Growth Des., 9, 4070 (2009); doi:10.1021/cg900297q.
- J.Y. Lao, J.Y. Huang, D.Z. Wang and Z.F. Ren, Nano Lett., 3, 235 (2003); doi:10.1021/nl025884u.
- Q.X. Zhang and W. Bai, Vacuum, 86, 398 (2011); doi:10.1016/j.vacuum.2011.08.005.
- G. Saito, S. Hosokai and T. Akiyama, Mater. Chem. Phys., 130, 79 (2011); doi:10.1016/j.matchemphys.2011.05.084.
- D.G. Tong, P. Wu, P.K. Su, D.Q. Wang and H.Y. Tian, Mater. Lett., 70, 94 (2012); doi:10.1016/j.matlet.2011.11.114.
- M. Zheng and J.Q. Wu, Appl. Surf. Sci., 255, 5656 (2009); doi:10.1016/j.apsusc.2008.10.091.
- N. Varghese, L.S. Panchakarla, M. Hanapi, A. Govindaraj and C.N.R. Rao, Mater. Res. Bull., 42, 2117 (2007); doi:10.1016/j.materresbull.2007.01.017.
- A. Marzouki, F. Falyouni, N. Haneche, A. Lusson, P. Galtier, L. Rigutti, G. Jacopin, M. Tchernycheva, M. Oueslati and V. Sallet, Mater. Lett., 64, 2112 (2010); doi:10.1016/j.matlet.2010.06.056.
- X.Y. Yang, A. Wolcott, G.M. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang and Y. Li, Nano Lett., 9, 2331 (2009); doi:10.1021/nl900772q.
- Y.C. Qiu, K.Y. Yan, H. Deng and S.H. Yang, Nano Lett., 12, 407 (2012); doi:10.1021/nl2037326.
- Y.F. Qiu, M.L. Yang, H.B. Fan, Y.J. Xu, Y.Y. Shao, X.X. Yang and S.H. Yang, Mater. Lett., 99, 105 (2013); doi:10.1016/j.matlet.2013.02.087.
- B.D. Yao, Y.F. Chan and N. Wang, Appl. Phys. Lett., 81, 757 (2002); doi:10.1063/1.1495878.
References
K. Keis, E. Magnusson, H. Lindstrom, S.E. Lindquist and A. Hagfeldt, Sol. Energy Mater. Solar Cells, 73, 51 (2002); doi:10.1016/S0927-0248(01)00110-6.
K.-S. Weißenrieder and J. Müller, Thin Solid Films, 300, 30 (1997); doi:10.1016/S0040-6090(96)09471-0.
K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano and H. Hosono, Science, 300, 1269 (2003); doi:10.1126/science.1083212.
A. Mclaren, T. Valdes-Solis, G.Q. Li and S.C. Tsang, J. Am. Chem. Soc., 131, 12540 (2009); doi:10.1021/ja9052703.
H. Hu, X. Huang, C. Deng, X. Chen and Y. Qian, Mater. Chem. Phys., 106, 58 (2007); doi:10.1016/j.matchemphys.2007.05.016.
W.S. Chen, D.A. Huang, H.C. Chen, T.Y. Shie, C.H. Hsieh, J.D. Liao and C.S. Kuo, Cryst. Growth Des., 9, 4070 (2009); doi:10.1021/cg900297q.
J.Y. Lao, J.Y. Huang, D.Z. Wang and Z.F. Ren, Nano Lett., 3, 235 (2003); doi:10.1021/nl025884u.
Q.X. Zhang and W. Bai, Vacuum, 86, 398 (2011); doi:10.1016/j.vacuum.2011.08.005.
G. Saito, S. Hosokai and T. Akiyama, Mater. Chem. Phys., 130, 79 (2011); doi:10.1016/j.matchemphys.2011.05.084.
D.G. Tong, P. Wu, P.K. Su, D.Q. Wang and H.Y. Tian, Mater. Lett., 70, 94 (2012); doi:10.1016/j.matlet.2011.11.114.
M. Zheng and J.Q. Wu, Appl. Surf. Sci., 255, 5656 (2009); doi:10.1016/j.apsusc.2008.10.091.
N. Varghese, L.S. Panchakarla, M. Hanapi, A. Govindaraj and C.N.R. Rao, Mater. Res. Bull., 42, 2117 (2007); doi:10.1016/j.materresbull.2007.01.017.
A. Marzouki, F. Falyouni, N. Haneche, A. Lusson, P. Galtier, L. Rigutti, G. Jacopin, M. Tchernycheva, M. Oueslati and V. Sallet, Mater. Lett., 64, 2112 (2010); doi:10.1016/j.matlet.2010.06.056.
X.Y. Yang, A. Wolcott, G.M. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang and Y. Li, Nano Lett., 9, 2331 (2009); doi:10.1021/nl900772q.
Y.C. Qiu, K.Y. Yan, H. Deng and S.H. Yang, Nano Lett., 12, 407 (2012); doi:10.1021/nl2037326.
Y.F. Qiu, M.L. Yang, H.B. Fan, Y.J. Xu, Y.Y. Shao, X.X. Yang and S.H. Yang, Mater. Lett., 99, 105 (2013); doi:10.1016/j.matlet.2013.02.087.
B.D. Yao, Y.F. Chan and N. Wang, Appl. Phys. Lett., 81, 757 (2002); doi:10.1063/1.1495878.