Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Modification of Titanium Oxide Films by Ferric Ions in Hydrothermal Conditions and their Photo-Electrochemical Properties
Corresponding Author(s) : Galina M. Seitmagzimova
Asian Journal of Chemistry,
Vol. 27 No. 4 (2015): Vol 27 Issue 4
Abstract
Anodic titanium oxide films were doped using ferric ions in hydrothermal conditions. Doping is accompanied by a full change in the structure and morphology of the surface of titanium oxide while anatase is established radiographically. Deep redshift in optical spectrum of titanium oxide takes place. This is accompanied by anodic photo-current sharply increasing 2.5 times under visible lighting with simultaneous decrease of current characteristics under ultraviolet light. This is explained by the synergistic effect of Fe-Ti compound formed on the surface of the anodic oxide. Firstly, deep acceptor levels of Fe3+ in titanium oxide energy band gap are created while dopant conductivity becomes prevalent and titanium oxide's own conductivity partially leveled. Secondly, its proper layer of ferric oxide is formed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Seitmagzimov, G. Seitmagzimova and V. Bishimbayev, Asian J. Chem., 25, 3285 (2013); doi:10.14233/ajchem.2013.13634.
- K.T. Ranjit and B. Viswanathan, J. Photochem. Photobiol. Chem., 108, 79 (1997); doi:10.1016/S1010-6030(97)00005-1.
- T. Lopez, J. Hernandez-Ventura, R. Gomez, F. Tzompantzi, E. Sanchez, X. Bokhimi and A. Garcia, J. Mol. Catal. Chem., 167, 101 (2001); doi:10.1016/S1381-1169(00)00496-9.
- J.W.J. Hamilton, J.A. Byrne, C. McCullagh and P.S.M. Dunlop, Int. J. Photoen., Article ID 631597 (2008); doi:10.1155/2008/631597.
- A. Di Paola, G. Marci, L. Palmisano, M. Schiavello, K. Uosaki, S. Ikeda and B. Ohtani, J. Phys. Chem. B, 106, 637 (2002); doi:10.1021/jp013074l.
- S.I. Shah, W. Li, C.P. Huang, O. Jung and C. Ni, Proc. Natl. Acad. Sci. USA, 99 (suppl. 2), 6482 (20012); doi:10.1073/pnas.052518299.
- M. Janczarek, H. Kisch and J. Hupka, Physicochem. Prob. Miner. Process., 41, 159 (2007).
- V. Shymanovska, L. Kernazhitsky, G. Puchkovska, V. Naumov, Ò. Khalyavka, V. Kshnyakin, S. Kshnyakina and V. Chernyak, J. Nano-Electron Phys., 3, 63 (2011).
- V.M. Zainullina, V.P. Zhukov, V.N. Krasilnikov, M.U. Yanchenko, L.U. Buldakova and E.V. Polyakov, Solid State Phys., 52, 271 (2010); doi:10.1134/S1063783410020095.
- I.V. Kolesnik, G.S. Chebotaeva, A.A. Eliseev, A.V. Lukashin, Yu.D. Tretyakov, E-MRS Spring Meeting, Book of Abstracts, Strasbourg, France, June (2009).
- M. Hirano, T. Joji, M. Inagaki and H. Iwata, J. Am. Ceram. Soc., 87, 35 (2004); doi:10.1111/j.1151-2916.2004.tb19941.x.
- K.S. Raja, M. Misra, V.K. Mahajan, T. Gandhi, P. Pillai and S.K. Mohapatra, J. Power Sources, 161, 1450 (2006); doi:10.1016/j.jpowsour.2006.06.044.
- H. Chen and L. Wang, Beilstein J. Nanotechnol., 5, 696 (2014); doi:10.3762/bjnano.5.82.
- M.D.S. Villalpando, A. Cugini and A.C. Miller, Int. J. Oil, Gas Coal Technol., 3, 75 (2010); doi:10.1504/IJOGCT.2010.032475.
- X. Wu, Q. Wei and J. Zhaohua, Thin Solid Films, 496, 288 (2006); doi:10.1016/j.tsf.2005.08.354.
- K.-S. Hwang, Y.-S. Jeon, K.-O. Jeon and B.-H. Kim, Optica Applicata, 35, 191 (2005).
- Z.-D. Meng, K. Zhang and W.-C. Oh, J. Korean Ceramic Soc., 46, 621 (2009); doi:10.4191/KCERS.2009.46.6.621.
- V.N. Nguyen, N.K.T. Nguyen and P.H. Nguyen, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2, 035014 (2011); doi:10.1088/2043-6262/2/3/035014.
- P.H.C. Camargo, G.G. Nunes, G.R. Friedermann, D.J. Evans, G.J. Leigh, G. Tremiliosi-Filho, E.L.de Sá, A.J.G. Zarbin and J.F. Soares, Mater. Res. Bull., 38, 1915 (2003); doi:10.1016/j.materresbull.2003.09.003.
- Y. Li, J. Chen, J. Liu, M. Ma, W. Chen and L. Li, J. Environ. Sci. (China), 22, 1290 (2010); doi:10.1016/S1001-0742(09)60252-7.
- R.S. Sonawane, B.B. Kale and M.K. Dongare, Mater. Chem. Phys., 85, 52 (2004); doi:10.1016/j.matchemphys.2003.12.007.
- O. Carp, C.L. Huisman and A. Reller, Prog. Solid State Chem., 32, 33 (2004); doi:10.1016/j.progsolidstchem.2004.08.001.
- C.L. Luu, Q.T. Nguyen and S.T. Ho, Adv. Nat. Sci.: Nanosci. Nanotechnol., 1, 015008 (2010); doi:10.1088/2043-6254/1/1/015008.
- M. Milanović, I. Stijepović and L.M. Nikolić, Proc. Appl. Ceramics, 4, 69 (2010); doi:10.2298/PAC1002069M.
- M.A. Alpuche-Aviles and Y.Y. Wu, J. Am. Chem. Soc., 161, 1450 (2009); doi:10.1021/ja806719x.
- A.T. Chien, J.S. Speck, F.F. Lange, A.C. Daykin and C.G. Levi, J. Mater. Res., 10, 1784 (1995).
- C.Y. Cui, J.D. Hu, Y.H. Liu and Z.X. Guo, J. Mater. Sci. Technol., 24, 964 (2008); doi:10.1179/174328408X322088.
References
A. Seitmagzimov, G. Seitmagzimova and V. Bishimbayev, Asian J. Chem., 25, 3285 (2013); doi:10.14233/ajchem.2013.13634.
K.T. Ranjit and B. Viswanathan, J. Photochem. Photobiol. Chem., 108, 79 (1997); doi:10.1016/S1010-6030(97)00005-1.
T. Lopez, J. Hernandez-Ventura, R. Gomez, F. Tzompantzi, E. Sanchez, X. Bokhimi and A. Garcia, J. Mol. Catal. Chem., 167, 101 (2001); doi:10.1016/S1381-1169(00)00496-9.
J.W.J. Hamilton, J.A. Byrne, C. McCullagh and P.S.M. Dunlop, Int. J. Photoen., Article ID 631597 (2008); doi:10.1155/2008/631597.
A. Di Paola, G. Marci, L. Palmisano, M. Schiavello, K. Uosaki, S. Ikeda and B. Ohtani, J. Phys. Chem. B, 106, 637 (2002); doi:10.1021/jp013074l.
S.I. Shah, W. Li, C.P. Huang, O. Jung and C. Ni, Proc. Natl. Acad. Sci. USA, 99 (suppl. 2), 6482 (20012); doi:10.1073/pnas.052518299.
M. Janczarek, H. Kisch and J. Hupka, Physicochem. Prob. Miner. Process., 41, 159 (2007).
V. Shymanovska, L. Kernazhitsky, G. Puchkovska, V. Naumov, Ò. Khalyavka, V. Kshnyakin, S. Kshnyakina and V. Chernyak, J. Nano-Electron Phys., 3, 63 (2011).
V.M. Zainullina, V.P. Zhukov, V.N. Krasilnikov, M.U. Yanchenko, L.U. Buldakova and E.V. Polyakov, Solid State Phys., 52, 271 (2010); doi:10.1134/S1063783410020095.
I.V. Kolesnik, G.S. Chebotaeva, A.A. Eliseev, A.V. Lukashin, Yu.D. Tretyakov, E-MRS Spring Meeting, Book of Abstracts, Strasbourg, France, June (2009).
M. Hirano, T. Joji, M. Inagaki and H. Iwata, J. Am. Ceram. Soc., 87, 35 (2004); doi:10.1111/j.1151-2916.2004.tb19941.x.
K.S. Raja, M. Misra, V.K. Mahajan, T. Gandhi, P. Pillai and S.K. Mohapatra, J. Power Sources, 161, 1450 (2006); doi:10.1016/j.jpowsour.2006.06.044.
H. Chen and L. Wang, Beilstein J. Nanotechnol., 5, 696 (2014); doi:10.3762/bjnano.5.82.
M.D.S. Villalpando, A. Cugini and A.C. Miller, Int. J. Oil, Gas Coal Technol., 3, 75 (2010); doi:10.1504/IJOGCT.2010.032475.
X. Wu, Q. Wei and J. Zhaohua, Thin Solid Films, 496, 288 (2006); doi:10.1016/j.tsf.2005.08.354.
K.-S. Hwang, Y.-S. Jeon, K.-O. Jeon and B.-H. Kim, Optica Applicata, 35, 191 (2005).
Z.-D. Meng, K. Zhang and W.-C. Oh, J. Korean Ceramic Soc., 46, 621 (2009); doi:10.4191/KCERS.2009.46.6.621.
V.N. Nguyen, N.K.T. Nguyen and P.H. Nguyen, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2, 035014 (2011); doi:10.1088/2043-6262/2/3/035014.
P.H.C. Camargo, G.G. Nunes, G.R. Friedermann, D.J. Evans, G.J. Leigh, G. Tremiliosi-Filho, E.L.de Sá, A.J.G. Zarbin and J.F. Soares, Mater. Res. Bull., 38, 1915 (2003); doi:10.1016/j.materresbull.2003.09.003.
Y. Li, J. Chen, J. Liu, M. Ma, W. Chen and L. Li, J. Environ. Sci. (China), 22, 1290 (2010); doi:10.1016/S1001-0742(09)60252-7.
R.S. Sonawane, B.B. Kale and M.K. Dongare, Mater. Chem. Phys., 85, 52 (2004); doi:10.1016/j.matchemphys.2003.12.007.
O. Carp, C.L. Huisman and A. Reller, Prog. Solid State Chem., 32, 33 (2004); doi:10.1016/j.progsolidstchem.2004.08.001.
C.L. Luu, Q.T. Nguyen and S.T. Ho, Adv. Nat. Sci.: Nanosci. Nanotechnol., 1, 015008 (2010); doi:10.1088/2043-6254/1/1/015008.
M. Milanović, I. Stijepović and L.M. Nikolić, Proc. Appl. Ceramics, 4, 69 (2010); doi:10.2298/PAC1002069M.
M.A. Alpuche-Aviles and Y.Y. Wu, J. Am. Chem. Soc., 161, 1450 (2009); doi:10.1021/ja806719x.
A.T. Chien, J.S. Speck, F.F. Lange, A.C. Daykin and C.G. Levi, J. Mater. Res., 10, 1784 (1995).
C.Y. Cui, J.D. Hu, Y.H. Liu and Z.X. Guo, J. Mater. Sci. Technol., 24, 964 (2008); doi:10.1179/174328408X322088.