Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Thermal and Spectroscopic Dynamics of Titanium Oxide Functionalized Polyaniline Coated Sawdust
Corresponding Author(s) : Mangaka Matoetoe
Asian Journal of Chemistry,
Vol. 27 No. 4 (2015): Vol 27 Issue 4
Abstract
Natural cellulose (sawdust) usage is limited by its poor physical and chemical properties. This study looks into the effects of chemical treatment of sawdust with polyaniline. Polyaniline (PANI) was chemically polymerized in situ from aniline in acid medium containing sawdust and/or titanium oxide (TiO2) to form polyaniline composites (PANI/SD, PANI/SD/TiO2 and PANI/SD/TiO2). These composites spectrophotometric, structural, morphological and thermal properties were determined using various spectrophotometric techniques such as fourier transform infrared (FTIR), UV-visible, transmission electron microscope (TEM), thermogravimetric (TG) and differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). Results indicate structure retention by the polyaniline, Sawdust and titanium oxide. However, minor chemical shifts were indicative of a physio-chemical interaction between the functional groups. The marked morphological changes observed from the pure chemicals and composites suggests multi-layer formation. Thermal studies showed two weight loss waves; 1st waves are due to water and doping material loss while 2nd wave losses are a result of polymer decomposition. The weight loss trend was: PANI/SD < PANI < PANI/SD/TiO2 < PANI/TiO2, thus suggesting a thermal stability improvement with the addition of TiO2. Powder X-ray diffraction confirmed the structural retention of pure polyaniline and sawdust as indicated by the appearance of their representative broad 2q angles at 20°, 26° and 15°, 24°.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Majeed, M. Jawaid, A. Hassan, A.H.P.S. Abu Bakar, H.P.S. Abdul Khalil, A.A. Salema and I. Inuwa, Mater. Des., 46, 391 (2013); doi:10.1016/j.matdes.2012.10.044.
- R. Gangopadhyay and A. De, Chem. Mater., 12, 608 (2000); doi:10.1021/cm990537f.
- W.S. Huang and A.G. MacDiarmid, Polymer, 34, 1833 (1993); doi:10.1016/0032-3861(93)90424-9.
- T. Kobayashi, H. Yoneyama and H.J. Tamura, J. Electroanal. Chem., 161, 419 (1984); doi:10.1016/S0022-0728(84)80201-6.
- M.V. Deshpande and D.P. Amalnerkar, Prog. Polym. Sci., 18, 623 (1993); doi:10.1016/0079-6700(93)90005-W.
- A.G. MacDiarmid, S.L. Mu, N.L. Somasiri and W. Wu, Mol. Cryst. Liq. Cryst., 121, 187 (1985); doi:10.1080/00268948508074859.
- R. Noufi, A.J. Nozik, J. White and L.F. Warren, J. Electrochem. Soc., 129, 2261 (1982); doi:10.1149/1.2123487.
- G. Neetika, D. Kumar and S.K. Tomar, J. Mater. Chem., 2, 79 (2012); doi:10.5923/j.ijmc.20120202.07.
- N. Parvatikar, S. Jain, S. Khasim, M. Revansiddappa, S.V. Bhoraskar and M.V.N.A. Prasad, Sens. Actuators B, 114, 599 (2006); doi:10.1016/j.snb.2005.06.057.
- N. Parvatikar, S. Jain, S.V. Bhoraskar and M.V.N. Ambika Prasad, J. Appl. Polym. Sci., 102, 5533 (2006); doi:10.1002/app.24636.
- N. Parvatikar, S. Jain, C.M. Kanamadi, B.K. Chougule, S.V. Bhoraskar and A.M.V.N. Prasad, J. Appl. Polym. Sci., 103, 653 (2007); doi:10.1002/app.23869.
- T.A. Kerr, H. Wu and L.F. Nazar, Chem. Mater., 8, 2005 (1996); doi:10.1021/cm960071q.
- M.G. Kanatzidis, C.G. Wu, H.O. Marcy and C.R. Kannewurf, J. Am. Chem. Soc., 111, 4139 (1989); doi:10.1021/ja00193a078.
- M. Wan, W.X. Zhou and J.C. Li, Synth. Mater., 78, 27 (1996); doi:10.1016/0379-6779(95)03562-1.
- C. Dearmitt and S.P. Armes, Langmuir, 9, 652 (1993); doi:10.1021/la00027a007.
- R. Ansari and F. Raofie, E-J. Chem., 3, 35 (2006); doi:10.1155/2006/523275.
- F. Kanwal, R. Rehman, T. Mahmud, J. Anwar and R. Ilyas, J. Chil. Chem. Soc., 57, 1058 (2012); doi:10.4067/S0717-97072012000100022.
- F. Okumu, M. Matoetoe and O. Fatoki, Sci. J. Chem., 1, 29 (2013); doi:10.11648/j.sjc.20130103.11.
- T.T. Waryo, E.A. Songa, M.C. Matoetoe, R.F. Ngece, P.M. Ndangili, A. Al-Ahmed, N.M. Jahed, P.G.L. Baker and E.I. Iwuoha, in eds.: U. Yogeswaran, S.A. Kumar and S.-M. Chen; Nanostructured Materials for Electrochemical Biosensors in Nanotechnology Science and Technology Series, Nova, New York, pp. 39-64 (2009).
- A.G. MacDiarmid, Angew. Chem. Int. Ed., 40, 2581 (2001); doi:10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2.
- G.G. Wallace, G.M. Spinks, L.A.P. Kane-Maguire and P.R. Teasdale, Conductive Electroactive Polymers: Intelligent Materials Systems, edn 2, CRC Press, Boca Raton, FL (2003).
- D. Chao, J. Chen, X. Lu, L. Chen, W. Zhang and Y. Wei, Synth. Met., 150, 47 (2005); doi:10.1016/j.synthmet.2005.01.010.
- H. Zengin and G. Kalayci, Mater. Chem. Phys., 120, 46 (2010); doi:10.1016/j.matchemphys.2009.10.019.
- C. Wei, Y. Zhu, X. Yang and C. Li, Mater. Sci. Eng. B, 137, 213 (2007); doi:10.1016/j.mseb.2006.11.016.
- M.A. Salem, A.F. Al-Ghonemiy and A.B. Zaki, Appl. Catal. B, 91, 59 (2009); doi:10.1016/j.apcatb.2009.05.027.
- A.K. Cuentas-Gallegos and P. Gómez-Romero, J. Power Sources, 161, 580 (2006); doi:10.1016/j.jpowsour.2006.04.138.
- M.C. Gupta and S.S. Umare, Macromolecules, 25, 138 (1992); doi:10.1021/ma00027a023.
- S.H. Khor, K.G. Neoh and E.T. Kang, J. Appl. Polym. Sci., 40, 2015 (1990); doi:10.1002/app.1990.070401116.
- S. Wang, Z. Tan, Y. Li, L. Sun and T. Zhang, Thermochim. Acta, 441, 191 (2006); doi:10.1016/j.tca.2005.05.020.
- M. Ghorbani and H. Eisazadeh, Synth. Met., 162, 527 (2012); doi:10.1016/j.synthmet.2012.01.019.
- F.S. Kittur, K.V. Harish Prashanth, K. Udaya Sankar and R.N. Tharanathan, Carbohydr. Polym., 49, 185 (2002); doi:10.1016/S0144-8617(01)00320-4.
- W. Feng, E. Sun, A. Fujii, H. Wu, K. Niihara and K. Yoshino, Bull. Chem. Soc. Jpn., 73, 2627 (2000); doi:10.1246/bcsj.73.2627.
- Z. Zhang, Z. Wei and M. Wan, Macromolecules, 35, 5937 (2002); doi:10.1021/ma020199v.
- H. Xia and Q. Wang, Chem. Mater., 14, 2158 (2002); doi:10.1021/cm0109591.
References
K. Majeed, M. Jawaid, A. Hassan, A.H.P.S. Abu Bakar, H.P.S. Abdul Khalil, A.A. Salema and I. Inuwa, Mater. Des., 46, 391 (2013); doi:10.1016/j.matdes.2012.10.044.
R. Gangopadhyay and A. De, Chem. Mater., 12, 608 (2000); doi:10.1021/cm990537f.
W.S. Huang and A.G. MacDiarmid, Polymer, 34, 1833 (1993); doi:10.1016/0032-3861(93)90424-9.
T. Kobayashi, H. Yoneyama and H.J. Tamura, J. Electroanal. Chem., 161, 419 (1984); doi:10.1016/S0022-0728(84)80201-6.
M.V. Deshpande and D.P. Amalnerkar, Prog. Polym. Sci., 18, 623 (1993); doi:10.1016/0079-6700(93)90005-W.
A.G. MacDiarmid, S.L. Mu, N.L. Somasiri and W. Wu, Mol. Cryst. Liq. Cryst., 121, 187 (1985); doi:10.1080/00268948508074859.
R. Noufi, A.J. Nozik, J. White and L.F. Warren, J. Electrochem. Soc., 129, 2261 (1982); doi:10.1149/1.2123487.
G. Neetika, D. Kumar and S.K. Tomar, J. Mater. Chem., 2, 79 (2012); doi:10.5923/j.ijmc.20120202.07.
N. Parvatikar, S. Jain, S. Khasim, M. Revansiddappa, S.V. Bhoraskar and M.V.N.A. Prasad, Sens. Actuators B, 114, 599 (2006); doi:10.1016/j.snb.2005.06.057.
N. Parvatikar, S. Jain, S.V. Bhoraskar and M.V.N. Ambika Prasad, J. Appl. Polym. Sci., 102, 5533 (2006); doi:10.1002/app.24636.
N. Parvatikar, S. Jain, C.M. Kanamadi, B.K. Chougule, S.V. Bhoraskar and A.M.V.N. Prasad, J. Appl. Polym. Sci., 103, 653 (2007); doi:10.1002/app.23869.
T.A. Kerr, H. Wu and L.F. Nazar, Chem. Mater., 8, 2005 (1996); doi:10.1021/cm960071q.
M.G. Kanatzidis, C.G. Wu, H.O. Marcy and C.R. Kannewurf, J. Am. Chem. Soc., 111, 4139 (1989); doi:10.1021/ja00193a078.
M. Wan, W.X. Zhou and J.C. Li, Synth. Mater., 78, 27 (1996); doi:10.1016/0379-6779(95)03562-1.
C. Dearmitt and S.P. Armes, Langmuir, 9, 652 (1993); doi:10.1021/la00027a007.
R. Ansari and F. Raofie, E-J. Chem., 3, 35 (2006); doi:10.1155/2006/523275.
F. Kanwal, R. Rehman, T. Mahmud, J. Anwar and R. Ilyas, J. Chil. Chem. Soc., 57, 1058 (2012); doi:10.4067/S0717-97072012000100022.
F. Okumu, M. Matoetoe and O. Fatoki, Sci. J. Chem., 1, 29 (2013); doi:10.11648/j.sjc.20130103.11.
T.T. Waryo, E.A. Songa, M.C. Matoetoe, R.F. Ngece, P.M. Ndangili, A. Al-Ahmed, N.M. Jahed, P.G.L. Baker and E.I. Iwuoha, in eds.: U. Yogeswaran, S.A. Kumar and S.-M. Chen; Nanostructured Materials for Electrochemical Biosensors in Nanotechnology Science and Technology Series, Nova, New York, pp. 39-64 (2009).
A.G. MacDiarmid, Angew. Chem. Int. Ed., 40, 2581 (2001); doi:10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2.
G.G. Wallace, G.M. Spinks, L.A.P. Kane-Maguire and P.R. Teasdale, Conductive Electroactive Polymers: Intelligent Materials Systems, edn 2, CRC Press, Boca Raton, FL (2003).
D. Chao, J. Chen, X. Lu, L. Chen, W. Zhang and Y. Wei, Synth. Met., 150, 47 (2005); doi:10.1016/j.synthmet.2005.01.010.
H. Zengin and G. Kalayci, Mater. Chem. Phys., 120, 46 (2010); doi:10.1016/j.matchemphys.2009.10.019.
C. Wei, Y. Zhu, X. Yang and C. Li, Mater. Sci. Eng. B, 137, 213 (2007); doi:10.1016/j.mseb.2006.11.016.
M.A. Salem, A.F. Al-Ghonemiy and A.B. Zaki, Appl. Catal. B, 91, 59 (2009); doi:10.1016/j.apcatb.2009.05.027.
A.K. Cuentas-Gallegos and P. Gómez-Romero, J. Power Sources, 161, 580 (2006); doi:10.1016/j.jpowsour.2006.04.138.
M.C. Gupta and S.S. Umare, Macromolecules, 25, 138 (1992); doi:10.1021/ma00027a023.
S.H. Khor, K.G. Neoh and E.T. Kang, J. Appl. Polym. Sci., 40, 2015 (1990); doi:10.1002/app.1990.070401116.
S. Wang, Z. Tan, Y. Li, L. Sun and T. Zhang, Thermochim. Acta, 441, 191 (2006); doi:10.1016/j.tca.2005.05.020.
M. Ghorbani and H. Eisazadeh, Synth. Met., 162, 527 (2012); doi:10.1016/j.synthmet.2012.01.019.
F.S. Kittur, K.V. Harish Prashanth, K. Udaya Sankar and R.N. Tharanathan, Carbohydr. Polym., 49, 185 (2002); doi:10.1016/S0144-8617(01)00320-4.
W. Feng, E. Sun, A. Fujii, H. Wu, K. Niihara and K. Yoshino, Bull. Chem. Soc. Jpn., 73, 2627 (2000); doi:10.1246/bcsj.73.2627.
Z. Zhang, Z. Wei and M. Wan, Macromolecules, 35, 5937 (2002); doi:10.1021/ma020199v.
H. Xia and Q. Wang, Chem. Mater., 14, 2158 (2002); doi:10.1021/cm0109591.