Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Comparative Studies on the Interaction Between the Acriflavine and Bovine Serum Albumin by Fluorescence Spectroscopy, Synchronous Fluorescence
Corresponding Author(s) : Baosheng Liu
Asian Journal of Chemistry,
Vol. 27 No. 4 (2015): Vol 27 Issue 4
Abstract
Under simulated physiological conditions, we studied the reaction mechanism of acriflavine (ACF) with bovine serum albumin (BSA) at different temperature by utilizing fluorescence quenching method and synchronous fluorescence method, respectively. The results indicate that acriflavine could quench the intrinsic fluorescence of bovine serum albumin strongly and the quenching mechanism was a static quenching process; the electrostatic force played an important role on the conjugation reaction between acriflavine and bovine serum albumin. The results obtained by the two methods were consistent, which indicated synchronous fluorescence spectroscopy can replace traditional fluorescence quenching method to study reaction mechanism of dyes with proteins.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Guharay, B. Sengupta and P.K. Sengupta, Proteins, 43, 75 (2001); doi:10.1002/1097-0134(20010501)43:2<75::AID-PROT1019>3.0.CO;2-7.
- C. Bertucci and E. Domenici, Curr. Med. Chem., 9, 1463 (2002); doi:10.2174/0929867023369673.
- A. Tamta, M. Chaudhary and R. Sehgal, Int. J. Pharm., 6, 111 (2010); doi:10.3923/ijp.2010.111.116.
- H.H. Eldaroti, S.A. Gadir, M.S. Refat and A.M.A. Adam, Int. J. Electrochem. Soc., 8, 5774 (2013).
- B. Ahmad, S. Parveen and R.H. Khan, Biomacromolecules, 7, 1350 (2006); doi:10.1021/bm050996b.
- S. Deepa and A.K. Mishra, J. Pharm. Biomed. Anal., 38, 556 (2005); doi:10.1016/j.jpba.2005.01.023.
- E.L. Gelamo, C.H. Silva, H. Imasato and M. Tabak, Biochim. Biophys. Acta, 1594, 84 (2002); doi:10.1016/S0167-4838(01)00287-4.
- J. Zhang, W.X. Li, B.Y. Ao, S.Y. Feng and X.D. Xin, Spectrochim. Acta A, 118, 972 (2014); doi:10.1016/j.saa.2013.09.135.
- Y.N. Zhu, B. Li, H.A. Yin, S.G. Ge and J.H. Yu, Monatsh. Chem., 145, 167 (2014); doi:10.1007/s00706-013-0991-x.
- J.C. Li, N. Li, Q.H. Wu, Z. Wang, J.J. Ma, C. Wang and L.J. Zhang, J. Mol. Struct., 833, 184 (2007); doi:10.1016/j.molstruc.2006.09.019.
- Y.Z. Zhang, X.X. Chen, J. Dai, X.P. Zhang, Y.X. Liu and Y. Liu, Luminescence, 23, 150 (2008); doi:10.1002/bio.1025.
- O. Azimi, Z. Emami, H. Salari and J. Chamani, Molecules, 16, 9792 (2011); doi:10.3390/molecules16129792.
- Q. Zhang, Y. Ni and S. Kokot, J. Pharm. Biomed. Anal., 52, 280 (2010); doi:10.1016/j.jpba.2010.01.006.
- P.D. Ross and S. Subramanian, Biochemistry, 20, 3096 (1981); doi:10.1021/bi00514a017.
- Y. Teng, R.T. Liu, C. Li, Q. Xia and P.J. Zhang, J. Hazard. Mater., 190, 574 (2011); doi:10.1016/j.jhazmat.2011.03.084.
- C.Z. Zheng, H.P. Wang, W. Xu, C.Y. Xu, J.G. Liang and H.Y. Han, Spectrochim. Acta A, 118, 897 (2014); doi:10.1016/j.saa.2013.09.082.
References
J. Guharay, B. Sengupta and P.K. Sengupta, Proteins, 43, 75 (2001); doi:10.1002/1097-0134(20010501)43:2<75::AID-PROT1019>3.0.CO;2-7.
C. Bertucci and E. Domenici, Curr. Med. Chem., 9, 1463 (2002); doi:10.2174/0929867023369673.
A. Tamta, M. Chaudhary and R. Sehgal, Int. J. Pharm., 6, 111 (2010); doi:10.3923/ijp.2010.111.116.
H.H. Eldaroti, S.A. Gadir, M.S. Refat and A.M.A. Adam, Int. J. Electrochem. Soc., 8, 5774 (2013).
B. Ahmad, S. Parveen and R.H. Khan, Biomacromolecules, 7, 1350 (2006); doi:10.1021/bm050996b.
S. Deepa and A.K. Mishra, J. Pharm. Biomed. Anal., 38, 556 (2005); doi:10.1016/j.jpba.2005.01.023.
E.L. Gelamo, C.H. Silva, H. Imasato and M. Tabak, Biochim. Biophys. Acta, 1594, 84 (2002); doi:10.1016/S0167-4838(01)00287-4.
J. Zhang, W.X. Li, B.Y. Ao, S.Y. Feng and X.D. Xin, Spectrochim. Acta A, 118, 972 (2014); doi:10.1016/j.saa.2013.09.135.
Y.N. Zhu, B. Li, H.A. Yin, S.G. Ge and J.H. Yu, Monatsh. Chem., 145, 167 (2014); doi:10.1007/s00706-013-0991-x.
J.C. Li, N. Li, Q.H. Wu, Z. Wang, J.J. Ma, C. Wang and L.J. Zhang, J. Mol. Struct., 833, 184 (2007); doi:10.1016/j.molstruc.2006.09.019.
Y.Z. Zhang, X.X. Chen, J. Dai, X.P. Zhang, Y.X. Liu and Y. Liu, Luminescence, 23, 150 (2008); doi:10.1002/bio.1025.
O. Azimi, Z. Emami, H. Salari and J. Chamani, Molecules, 16, 9792 (2011); doi:10.3390/molecules16129792.
Q. Zhang, Y. Ni and S. Kokot, J. Pharm. Biomed. Anal., 52, 280 (2010); doi:10.1016/j.jpba.2010.01.006.
P.D. Ross and S. Subramanian, Biochemistry, 20, 3096 (1981); doi:10.1021/bi00514a017.
Y. Teng, R.T. Liu, C. Li, Q. Xia and P.J. Zhang, J. Hazard. Mater., 190, 574 (2011); doi:10.1016/j.jhazmat.2011.03.084.
C.Z. Zheng, H.P. Wang, W. Xu, C.Y. Xu, J.G. Liang and H.Y. Han, Spectrochim. Acta A, 118, 897 (2014); doi:10.1016/j.saa.2013.09.082.