Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Rheological Studies of Novel Acrylic Acid-co-Acrylonitrile-co-N-Isopropylacrylamide Terpolymeric Hydrogels
Corresponding Author(s) : Muhammad Aslam Malana
Asian Journal of Chemistry,
Vol. 27 No. 4 (2015): Vol 27 Issue 4
Abstract
The primary objective of this research work is the extensive rheological characterization of novel N-isopro-pylacrylamide (NIPAAM) based hydrogels. N-isopropylacrylamide being a temperature sensitive component can alter flow behaviour and drug release characteristics of topical gels in the form of change in their viscosities with temperature and variation in the network structure with their composition. Terpolymeric hydrogels of acrylic acid-co-acrylonitrile-co-N-isopropylacrylamide (AA-AN-NIPAAM) with different concentrations of N-isopropylacrylamide were synthesized by free radical polymerization method. Oscillatory and transient shear measurements were carried out to study viscoelastic properties, effect of temperature on flow behaviour and yield strength of novel pharmaceutical gel formulations. Results indicate a remarkable temperature dependency of the N-isopropylacrylamide based physically cross linked hydrogels. Flow curves plotted at a range of temperature point out a reasonable pseudoplastic behaviour, the most facilitating property of topogels. The hydrogels have acquired a suitable yield strength requisite to rupture their polymeric network structure. The trends of dynamic moduli (G' and G") and relaxation time with N-isopropylacrylamide contents indicate presence of necessary mechanical strength required for the settlement of the gels and controlled release of the drug. Conclusively the rheological behaviour of these novel gels is found to be favourable for applying as controlled and sustained targeted drug delivery.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.H. Chen, H.D. Embree, E.M. Brown, M.M. Taylor and G.F. Payne, Biomaterials, 24, 2831 (2003); doi:10.1016/S0142-9612(03)00096-6.
- J.L. Drury and D.J. Mooney, Biomaterials, 24, 4337 (2003); doi:10.1016/S0142-9612(03)00340-5.
- W.E. Hennink and C.F. van Nostrum, Adv. Drug Deliv., 54, 13 (2002); doi:10.1016/S0169-409X(01)00240-X.
- S.R. van Tomme, M.J. van Steenbergen, S.C. De Smedt, C.F. van Nostrum and W.E. Hennink, Biomaterials, 26, 2129 (2005); doi:10.1016/j.biomaterials.2004.05.035.
- L. Guan, H. Xu and D. Huang, Polymers (Korea), 34, 386 (2010).
- A. Hatefi and B. Amsden, J. Control. Rel., 80, 9 (2002); doi:10.1016/S0168-3659(02)00008-1.
- M.W. Michael, Encyclopedia of Polymer Science and Technology, John Wiley & Sons (2001).
- Y. Hirokawa and T. Tanaka, J. Chem. Phys., 81, 6379 (1984); doi:10.1063/1.447548.
- M. Heskins and J.E. Guillet, J. Macromol. Sci., 2, 1441 (1968); doi:10.1080/10601326808051910.
- G.H. Chen and A.S. Hoffman, Nature, 373, 49 (1995); doi:10.1038/373049a0.
- S. Tamburic and D.Q.M. Craig, Pharm. Res., 13, 279 (1996); doi:10.1023/A:1016003400886.
- D.H. Owen, J.J. Peters and D.F. Katz, Contraception, 64, 393 (2001); doi:10.1016/S0010-7824(01)00278-5.
- J. Coates, Interpretation of Infrared Spectra, A Practical Approach, John Wiley & Sons Ltd., Chichester (2000).
- P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca New York (1953).
- P. Flory, Statistical Mechanics of Chain Molecules, Academic Press, New York (1969).
- D.W. Chae, S.G. Oh and B.C. Kim, J. Polym. Sci. B, Polym. Phys., 42, 790 (2004); doi:10.1002/polb.10753.
- R.A.F. Cabral, J.A.W. Gut, V.R.N. Telis and J. Telis-Romero, Braz. J. Chem. Eng., 27, 563 (2010); doi:10.1590/S0104-66322010000400008.
- J.Y. Kim, J.Y. Song, E.J. Lee and S.K. Park, Colloid Polym. Sci., 281, 614 (2003); doi:10.1007/s00396-002-0808-7.
- N. Seddiki and D. Aliouche, Bull. Chem. Soc. Ethiopia, 27, 447 (2013).
- M. Okamoto, P.H. Nam, P. Maiti, T. Kotaka, N. Hasegawa and A. Usuki, Nano Lett., 1, 295 (2001); doi:10.1021/nl0100163.
- T. Fuchs, W. Richtering, W. Burchard, K. Kajiwara and S. Kitamura, Polym. Gels Netw., 5, 541 (1998); doi:10.1016/S0966-7822(97)00027-0.
- T. Yang, Y. Yao, Y. Lin, B. Wang, A. Niu and W. Dacheng, Iranian Polym. J., 19, 843 (2010).
- K.S. Cole and R.H. Cole, J. Chem. Phys., 9, 341 (1941); doi:10.1063/1.1750906.
- S. Deguchi, K. Kuroda, K. Akiyoshi, B. Lindman and J. Sunamoto, Colloids Surf. A, 147, 203 (1999); doi:10.1016/S0927-7757(98)00754-7.
- N.S. Singh, Indian J. Chem., 52A, 879 (2013).
References
T.H. Chen, H.D. Embree, E.M. Brown, M.M. Taylor and G.F. Payne, Biomaterials, 24, 2831 (2003); doi:10.1016/S0142-9612(03)00096-6.
J.L. Drury and D.J. Mooney, Biomaterials, 24, 4337 (2003); doi:10.1016/S0142-9612(03)00340-5.
W.E. Hennink and C.F. van Nostrum, Adv. Drug Deliv., 54, 13 (2002); doi:10.1016/S0169-409X(01)00240-X.
S.R. van Tomme, M.J. van Steenbergen, S.C. De Smedt, C.F. van Nostrum and W.E. Hennink, Biomaterials, 26, 2129 (2005); doi:10.1016/j.biomaterials.2004.05.035.
L. Guan, H. Xu and D. Huang, Polymers (Korea), 34, 386 (2010).
A. Hatefi and B. Amsden, J. Control. Rel., 80, 9 (2002); doi:10.1016/S0168-3659(02)00008-1.
M.W. Michael, Encyclopedia of Polymer Science and Technology, John Wiley & Sons (2001).
Y. Hirokawa and T. Tanaka, J. Chem. Phys., 81, 6379 (1984); doi:10.1063/1.447548.
M. Heskins and J.E. Guillet, J. Macromol. Sci., 2, 1441 (1968); doi:10.1080/10601326808051910.
G.H. Chen and A.S. Hoffman, Nature, 373, 49 (1995); doi:10.1038/373049a0.
S. Tamburic and D.Q.M. Craig, Pharm. Res., 13, 279 (1996); doi:10.1023/A:1016003400886.
D.H. Owen, J.J. Peters and D.F. Katz, Contraception, 64, 393 (2001); doi:10.1016/S0010-7824(01)00278-5.
J. Coates, Interpretation of Infrared Spectra, A Practical Approach, John Wiley & Sons Ltd., Chichester (2000).
P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca New York (1953).
P. Flory, Statistical Mechanics of Chain Molecules, Academic Press, New York (1969).
D.W. Chae, S.G. Oh and B.C. Kim, J. Polym. Sci. B, Polym. Phys., 42, 790 (2004); doi:10.1002/polb.10753.
R.A.F. Cabral, J.A.W. Gut, V.R.N. Telis and J. Telis-Romero, Braz. J. Chem. Eng., 27, 563 (2010); doi:10.1590/S0104-66322010000400008.
J.Y. Kim, J.Y. Song, E.J. Lee and S.K. Park, Colloid Polym. Sci., 281, 614 (2003); doi:10.1007/s00396-002-0808-7.
N. Seddiki and D. Aliouche, Bull. Chem. Soc. Ethiopia, 27, 447 (2013).
M. Okamoto, P.H. Nam, P. Maiti, T. Kotaka, N. Hasegawa and A. Usuki, Nano Lett., 1, 295 (2001); doi:10.1021/nl0100163.
T. Fuchs, W. Richtering, W. Burchard, K. Kajiwara and S. Kitamura, Polym. Gels Netw., 5, 541 (1998); doi:10.1016/S0966-7822(97)00027-0.
T. Yang, Y. Yao, Y. Lin, B. Wang, A. Niu and W. Dacheng, Iranian Polym. J., 19, 843 (2010).
K.S. Cole and R.H. Cole, J. Chem. Phys., 9, 341 (1941); doi:10.1063/1.1750906.
S. Deguchi, K. Kuroda, K. Akiyoshi, B. Lindman and J. Sunamoto, Colloids Surf. A, 147, 203 (1999); doi:10.1016/S0927-7757(98)00754-7.
N.S. Singh, Indian J. Chem., 52A, 879 (2013).