Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Novel Nitride Phosphors Ca5Si2N6: Eu2+/Ce3+
Corresponding Author(s) : Jinzhao Huang
Asian Journal of Chemistry,
Vol. 27 No. 3 (2015): Vol 27 Issue 3
Abstract
The novel nitride phosphor Ca5Si2N6: Eu2+/Ce3+ were successfully synthesized at 1450 °C via a solid-state reaction method under a nitrogen atmosphere. The photoluminescence of Ca5Si2N6: Eu2+/Ce3+ shows that the phosphors have the main emission peak at 609 and 470 nm, respectively. The phosphor Ca5Si2N6: Eu2+ can be excited in the range from 350 to 480 nm, which makes it the attractive candidate phosphors for the application in phosphor-converted light-emitting diodes as red phosphors. The Ca5Si2N6:Ce3+ can be effectively excited by near ultraviolet. Moreover, the effect of doping concentration on the luminescence property is investigated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.Y. Liu, Z.G. Xia, Z.P. Lian, J. Zhou and Q.F. Yan, J. Mater. Chem. C, 1, 7139 (2013); doi:10.1039/c3tc31423e.
- X. Zhang, Z. Zhao, X. Zhang, A. Marathe, D.B. Cordes, B. Weeks and J. Chaudhuri, J. Mater. Chem. C, 1, 7202 (2013); doi:10.1039/c3tc31200c.
- R.J. Xie and N. Hirosaki, Sci. Technol. Adv. Mater., 8, 588 (2007); doi:10.1016/j.stam.2007.08.005.
- S. F.X. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma and Q.Y. Zhang, Mater. Sci. Eng. Rep., 71, 1 (2010); doi:10.1016/j.mser.2010.07.001.
- P.F. Smet, K. Van den Eeckhout, A.J.J. Bos, E. van der Kolk and P. Dorenbos, J. Lumin., 132, 682 (2012); doi:10.1016/j.jlumin.2011.10.022.
- J.Y. Tang, C. Zhan, L.X. Yang, L.Y. Hao, X. Xu and A. Simeon, Mater. Chem. Phys., 132, 1089 (2012); doi:10.1016/j.matchemphys.2011.12.073.
- T. Suehiro, N. Hirosaki and R.-J. Xie, ACS Appl. Mater. Interfaces, 3, 811 (2011); doi:10.1021/am101160e.
- M. Seibald, T. Rosenthal, O. Oeckler, C. Maak, A. Tücks, P.J. Schmidt, D. Wiechert and W. Schnick, Chem. Mater., 25, 1852 (2013); doi:10.1021/cm400461v.
- X.F. Song, H. He, R.L. Fu, D.L. Wang, X.R. Zhao and Z.W. Pan, J. Phys. D Appl. Phys., 42, 065409 (2009); doi:10.1088/0022-3727/42/6/065409.
- Y.A. Zhang, X.T. Liu, B.F. Lei, H.E. Wang and Q.M. Sun, Energy Procedia, 16, 391 (2012); doi:10.1016/j.egypro.2012.01.064.
- Y. Fang, Y.Q. Li, R.J. Xie, N. Hirosaki, T. Takade, X.Y. Li and T. Qiu, J. Solid State Chem., 184, 1405 (2011); doi:10.1016/j.jssc.2011.03.048.
- K.Y. Jung and J.H. Seo, Electrochem. Solid. State, 11, J64 (2008); doi:10.1149/1.2917584.
- J.K. Park, J.M. Kim, E.S. Oh and C.H. Kim, Electrochem. Solid. State, 8, H6 (2005); doi:10.1149/1.1836113.
- H.A. Hoppe, H. Lutz, P. Morys, W. Schnick and A. Seilmeier, J. Phys. Chem. Solids, 61, 2001 (2000); doi:10.1016/S0022-3697(00)00194-3.
- Y. Kaneko and T. Koda, J. Cryst. Growth, 86, 72 (1990); doi:10.1016/0022-0248(90)90701-L.
- Y.Q. Li, N. Hirosaki, R.J. Xie, T. Takeda and M. Mitomo, Chem. Mater., 20, 6704 (2008); doi:10.1021/cm801669x.
- C.J. Duan, X.J. Wang, W.M. Otten, A.C.A. Delsing, J.T. Zhao and H.T. Hintzen, Chem. Mater., 20, 1597 (2008); doi:10.1021/cm701875e.
References
C.Y. Liu, Z.G. Xia, Z.P. Lian, J. Zhou and Q.F. Yan, J. Mater. Chem. C, 1, 7139 (2013); doi:10.1039/c3tc31423e.
X. Zhang, Z. Zhao, X. Zhang, A. Marathe, D.B. Cordes, B. Weeks and J. Chaudhuri, J. Mater. Chem. C, 1, 7202 (2013); doi:10.1039/c3tc31200c.
R.J. Xie and N. Hirosaki, Sci. Technol. Adv. Mater., 8, 588 (2007); doi:10.1016/j.stam.2007.08.005.
S. F.X. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma and Q.Y. Zhang, Mater. Sci. Eng. Rep., 71, 1 (2010); doi:10.1016/j.mser.2010.07.001.
P.F. Smet, K. Van den Eeckhout, A.J.J. Bos, E. van der Kolk and P. Dorenbos, J. Lumin., 132, 682 (2012); doi:10.1016/j.jlumin.2011.10.022.
J.Y. Tang, C. Zhan, L.X. Yang, L.Y. Hao, X. Xu and A. Simeon, Mater. Chem. Phys., 132, 1089 (2012); doi:10.1016/j.matchemphys.2011.12.073.
T. Suehiro, N. Hirosaki and R.-J. Xie, ACS Appl. Mater. Interfaces, 3, 811 (2011); doi:10.1021/am101160e.
M. Seibald, T. Rosenthal, O. Oeckler, C. Maak, A. Tücks, P.J. Schmidt, D. Wiechert and W. Schnick, Chem. Mater., 25, 1852 (2013); doi:10.1021/cm400461v.
X.F. Song, H. He, R.L. Fu, D.L. Wang, X.R. Zhao and Z.W. Pan, J. Phys. D Appl. Phys., 42, 065409 (2009); doi:10.1088/0022-3727/42/6/065409.
Y.A. Zhang, X.T. Liu, B.F. Lei, H.E. Wang and Q.M. Sun, Energy Procedia, 16, 391 (2012); doi:10.1016/j.egypro.2012.01.064.
Y. Fang, Y.Q. Li, R.J. Xie, N. Hirosaki, T. Takade, X.Y. Li and T. Qiu, J. Solid State Chem., 184, 1405 (2011); doi:10.1016/j.jssc.2011.03.048.
K.Y. Jung and J.H. Seo, Electrochem. Solid. State, 11, J64 (2008); doi:10.1149/1.2917584.
J.K. Park, J.M. Kim, E.S. Oh and C.H. Kim, Electrochem. Solid. State, 8, H6 (2005); doi:10.1149/1.1836113.
H.A. Hoppe, H. Lutz, P. Morys, W. Schnick and A. Seilmeier, J. Phys. Chem. Solids, 61, 2001 (2000); doi:10.1016/S0022-3697(00)00194-3.
Y. Kaneko and T. Koda, J. Cryst. Growth, 86, 72 (1990); doi:10.1016/0022-0248(90)90701-L.
Y.Q. Li, N. Hirosaki, R.J. Xie, T. Takeda and M. Mitomo, Chem. Mater., 20, 6704 (2008); doi:10.1021/cm801669x.
C.J. Duan, X.J. Wang, W.M. Otten, A.C.A. Delsing, J.T. Zhao and H.T. Hintzen, Chem. Mater., 20, 1597 (2008); doi:10.1021/cm701875e.