Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical Study on the Charge Transport Property of Thia- or Selenadiazole Compound
Corresponding Author(s) : Dong-Hua Hu
Asian Journal of Chemistry,
Vol. 27 No. 3 (2015): Vol 27 Issue 3
Abstract
In this work, we carried out theoretical investigation on the charge-transporting nature of 4,11-bis-[(triisopropylsilanyl)-ethynyl]-2-thia-1,3-diaza-cyclopenta[b]anthracene (1) and 4,11-bis-[(triisopropylsilanyl)-ethynyl]-2-selena-1,3-diaza-cyclopenta[b]anthracene (2) by Marcus theory and first-principle band structure. The character of the frontier molecular orbitals, reorganization energies, transfer integrals and band structures are considered in detail. The results show that the compounds 1 and 2 are ambipolar material, both electron and hole are favor of transporting. The intermolecular p-p ineraction and S···N/Se···N interaction provide the holes and electrons transport channels. The introduction of Se atom can effectively reduce the reorganization energy and considerably improve the electron transfer integrals, thus 2 is found to be a good candidate for ambipolar semiconducting material with high mobility and balanced transport.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Bendikov, F. Wudl and D.F. Perepichka, Chem. Rev., 104, 4891 (2004); doi:10.1021/cr030666m.
- J.E. Anthony, Chem. Rev., 106, 5028 (2006); doi:10.1021/cr050966z.
- V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey and J.L. Brédas, Chem. Rev., 107, 926 (2007); doi:10.1021/cr050140x.
- H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai and T. Hasegawa, Nature, 475, 364 (2011); doi:10.1038/nature10313.
- C. Mitsui, T. Okamoto, H. Matsui, M. Yamagishi, T. Matsushita, J. Soeda, K. Miwa, H. Sato, A. Yamano, T. Uemura and J. Takeya, Chem. Mater., 25, 3952 (2013); doi:10.1021/cm303376g.
- M.X. Zhang and G.J. Zhao, J. Phys. Chem. C, 116, 19197 (2012); doi:10.1021/jp306311v.
- B.D. Lindner, B.A. Coombs, M. Schaffroth, J.U. Engelhart, O. Tverskoy, F. Rominger, M. Hamburger and U.H.F. Bunz, Org. Lett., 15, 666 (2013); doi:10.1021/ol303490b.
- S.S. Zhao, F. Yu, G.C. Yang, H.Y. Zhang, Z.M. Su and Y. Wang, Dalton Trans., 41, 7272 (2012); doi:10.1039/c2dt00009a.
- T.C. Jiang, Z.Y. Wang, B.B. Du and S.S. Zhao, Chin. Chem. Lett., 24, 945 (2013); doi:10.1016/j.cclet.2013.06.007.
- R.A. Marcus, Rev. Mod. Phys., 65, 599 (1993); doi:10.1103/RevModPhys.65.599.
- J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996); doi:10.1103/PhysRevLett.77.3865.
References
M. Bendikov, F. Wudl and D.F. Perepichka, Chem. Rev., 104, 4891 (2004); doi:10.1021/cr030666m.
J.E. Anthony, Chem. Rev., 106, 5028 (2006); doi:10.1021/cr050966z.
V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey and J.L. Brédas, Chem. Rev., 107, 926 (2007); doi:10.1021/cr050140x.
H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai and T. Hasegawa, Nature, 475, 364 (2011); doi:10.1038/nature10313.
C. Mitsui, T. Okamoto, H. Matsui, M. Yamagishi, T. Matsushita, J. Soeda, K. Miwa, H. Sato, A. Yamano, T. Uemura and J. Takeya, Chem. Mater., 25, 3952 (2013); doi:10.1021/cm303376g.
M.X. Zhang and G.J. Zhao, J. Phys. Chem. C, 116, 19197 (2012); doi:10.1021/jp306311v.
B.D. Lindner, B.A. Coombs, M. Schaffroth, J.U. Engelhart, O. Tverskoy, F. Rominger, M. Hamburger and U.H.F. Bunz, Org. Lett., 15, 666 (2013); doi:10.1021/ol303490b.
S.S. Zhao, F. Yu, G.C. Yang, H.Y. Zhang, Z.M. Su and Y. Wang, Dalton Trans., 41, 7272 (2012); doi:10.1039/c2dt00009a.
T.C. Jiang, Z.Y. Wang, B.B. Du and S.S. Zhao, Chin. Chem. Lett., 24, 945 (2013); doi:10.1016/j.cclet.2013.06.007.
R.A. Marcus, Rev. Mod. Phys., 65, 599 (1993); doi:10.1103/RevModPhys.65.599.
J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996); doi:10.1103/PhysRevLett.77.3865.