Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study on Standard Electrode Potential for 2-Propanethiol Sulfone/2-Propanethiol
Corresponding Author(s) : Y.Z. Song
Asian Journal of Chemistry,
Vol. 27 No. 3 (2015): Vol 27 Issue 3
Abstract
Calculations were performed for 2-propanethiol and 2-propanethiol sulfone. The electrochemical behaviour of 2-propanethiol at gold electrode was investigated by cyclic voltammety and the results showed that the standard electrode potential for 2-propanethiol sulfone/2-propanethiol is 1.073 V, which is consistent with that of 1.083 V at B3LYP/6-31G(d, p)-PCM level. The front orbit theory and Mülliken charges of moleculer explain well on the oxidation of 2-propanethiol in oxidative desulfurization. According to equilibrium theory the experimental equilibrium constant in the oxidative desulfurization system of 2-propanethiol/H2O2 is 1.17 × 1048, which is consistent with the theoretical equilibrium constant of 2.18 × 1048 at B3LYP/6-31++g(d, p)-PCM level, indicating that 2-propanethiol can be oxidized by H2O2 and removed from fuel oils.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Winebrake, J.J. Corbett, E.H. Green, A. Lauer and V. Eyring, Environ. Sci. Technol., 43, 4776 (2009); doi:10.1021/es803224q.
- M. Yaseen, M. Shakirullah, I. Ahmad, A.U. Rahman, F.U. Rahman, M. Usman and R. Razzaq, J. Fuel Chem. Technol., 40, 714 (2012); doi:10.1016/S1872-5813(12)60027-9.
- V.M. Kogan, P.A. Nikulshin and N.N. Rozhdestvenskaya, Fuel, 100, 2 (2012); doi:10.1016/j.fuel.2011.11.016.
- S.A. Ali, S. Ahmed, K.W. Ahmed and M.A. Al-Saleh, Fuel Process. Technol., 98, 39 (2012); doi:10.1016/j.fuproc.2012.01.027.
- W. Azelee, W.A. Bakar, R. Ali, A.A.A. Kadir and W.N.A.W. Mokhtar, Fuel Process. Technol., 101, 78 (2012); doi:10.1016/j.fuproc.2012.04.004.
- J. Bu, G. Loh, C.G. Gwie, S. Dewiyanti, M. Tasrif and A. Borgna, Chem. Eng. J., 166, 207 (2011); doi:10.1016/j.cej.2010.10.063.
- K.K. Sarda, A. Bhandari, K.K. Pant and S. Jain, Fuel, 93, 86 (2012); doi:10.1016/j.fuel.2011.10.020.
- M. Seredych, C.T. Wu, P. Brender, C.O. Ania, C. Vix-Guterl and T.J. Bandosz, Fuel, 92, 318 (2012); doi:10.1016/j.fuel.2011.08.007.
- X. Chen, D. Song, C. Asumana and G. Yu, J. Mol. Catal. Chem., 359, 8 (2012); doi:10.1016/j.molcata.2012.03.014.
- C.D. Wilfred, C.F. Kiat, Z. Man, M.A. Bustam, M.I.M. Mutalib and C.Z. Phak, Fuel Process. Technol., 93, 85 (2012); doi:10.1016/j.fuproc.2011.09.018.
- I. Sharafutdinov, D. Stratiev, I. Shishkova, R. Dinkov, A. Batchvarov, P. Petkov and N. Rudnev, Fuel, 96, 556 (2012); doi:10.1016/j.fuel.2011.12.062.
- G. Yu, J. Zhao, D. Song, C. Asumana, X. Zhang and X. Chen, Ind. Eng. Chem. Res., 50, 11690 (2011); doi:10.1021/ie200735p.
- W.Y. Liu, Z.L. Lei and J.K. Wang, Energy Fuels, 15, 38 (2001); doi:10.1021/ef000039p.
- P. Agarwal and D.K. Sharma, Energy Fuels, 24, 518 (2010); doi:10.1021/ef900876j.
- J. Wang, D. Zhao and K. Li, Energy Fuels, 24, 2527 (2010); doi:10.1021/ef901324p.
- H. Zhang, J. Gao, H. Meng and C.X. Li, Ind. Eng. Chem. Res., 51, 6658 (2012); doi:10.1021/ie3004545.
- Y. Song, L. Zhang, HuiZhong, D. Shi, J. Xie and G. Zhao, Spectrochim. Acta A, 70, 943 (2008); doi:10.1016/j.saa.2008.01.029.
- Y.Z. Song, A.F. Zhu, J.X. Lv, G.X. Gong, J.M. Xie, J.F. Zhou, Y. Ye and X.D. Zhong, Spectrochim. Acta A, 73, 96 (2009); doi:10.1016/j.saa.2009.01.030.
- D.Q. Shi, X.F. Zhu and Y.Z. Song, Spectrochim. Acta A, 71, 1011 (2008); doi:10.1016/j.saa.2008.02.045.
- Y.Z. Song, Can. J. Chem., 88, 676 (2010); doi:10.1139/V10-059.
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); doi:10.1063/1.464913.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT (2009).
- R. Bonaccorsi, R. Cimiraglia and J. Tomasi, Comput. Chem., 4, 567 (1983); doi:10.1002/jcc.540040416.
- J.L. Pascualahuir, E. Silla, J. Tomasi and R.J. Bonaccorsi, Comput. Chem., 8, 778 (1987); doi:10.1002/jcc.540080605.
- S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys., 55, 117 (1981); doi:10.1016/0301-0104(81)85090-2.
- E. Laviron, J. Electroanal. Chem., 52, 355 (1974); doi:10.1016/S0022-0728(74)80448-1.
- E. Laviron, J. Electroanal. Chem., 101, 19 (1979); doi:10.1016/S0022-0728(79)80075-3.
- F. Wang, Y. Wu, J. Liu and B. Ye, Electrochim. Acta, 54, 1408 (2009); doi:10.1016/j.electacta.2008.09.027.
- F. Wang, Y. Xu, J. Zhao and S. Hu, Bioelectrochemistry, 70, 356 (2007); doi:10.1016/j.bioelechem.2006.05.003.
- Y.H. Wu, X.B. Ji and S.S. Hu, Bioelectrochemistry, 64, 91 (2004); doi:10.1016/j.bioelechem.2004.03.005.
- D. Dobos, Electrochemical Data, A Handbook for Electrochemists in Industry and Universities; Elsevier Scientific Publishing Company: Amsterdam-Oxford, New York, pp. 88-89 (1975).
References
J. Winebrake, J.J. Corbett, E.H. Green, A. Lauer and V. Eyring, Environ. Sci. Technol., 43, 4776 (2009); doi:10.1021/es803224q.
M. Yaseen, M. Shakirullah, I. Ahmad, A.U. Rahman, F.U. Rahman, M. Usman and R. Razzaq, J. Fuel Chem. Technol., 40, 714 (2012); doi:10.1016/S1872-5813(12)60027-9.
V.M. Kogan, P.A. Nikulshin and N.N. Rozhdestvenskaya, Fuel, 100, 2 (2012); doi:10.1016/j.fuel.2011.11.016.
S.A. Ali, S. Ahmed, K.W. Ahmed and M.A. Al-Saleh, Fuel Process. Technol., 98, 39 (2012); doi:10.1016/j.fuproc.2012.01.027.
W. Azelee, W.A. Bakar, R. Ali, A.A.A. Kadir and W.N.A.W. Mokhtar, Fuel Process. Technol., 101, 78 (2012); doi:10.1016/j.fuproc.2012.04.004.
J. Bu, G. Loh, C.G. Gwie, S. Dewiyanti, M. Tasrif and A. Borgna, Chem. Eng. J., 166, 207 (2011); doi:10.1016/j.cej.2010.10.063.
K.K. Sarda, A. Bhandari, K.K. Pant and S. Jain, Fuel, 93, 86 (2012); doi:10.1016/j.fuel.2011.10.020.
M. Seredych, C.T. Wu, P. Brender, C.O. Ania, C. Vix-Guterl and T.J. Bandosz, Fuel, 92, 318 (2012); doi:10.1016/j.fuel.2011.08.007.
X. Chen, D. Song, C. Asumana and G. Yu, J. Mol. Catal. Chem., 359, 8 (2012); doi:10.1016/j.molcata.2012.03.014.
C.D. Wilfred, C.F. Kiat, Z. Man, M.A. Bustam, M.I.M. Mutalib and C.Z. Phak, Fuel Process. Technol., 93, 85 (2012); doi:10.1016/j.fuproc.2011.09.018.
I. Sharafutdinov, D. Stratiev, I. Shishkova, R. Dinkov, A. Batchvarov, P. Petkov and N. Rudnev, Fuel, 96, 556 (2012); doi:10.1016/j.fuel.2011.12.062.
G. Yu, J. Zhao, D. Song, C. Asumana, X. Zhang and X. Chen, Ind. Eng. Chem. Res., 50, 11690 (2011); doi:10.1021/ie200735p.
W.Y. Liu, Z.L. Lei and J.K. Wang, Energy Fuels, 15, 38 (2001); doi:10.1021/ef000039p.
P. Agarwal and D.K. Sharma, Energy Fuels, 24, 518 (2010); doi:10.1021/ef900876j.
J. Wang, D. Zhao and K. Li, Energy Fuels, 24, 2527 (2010); doi:10.1021/ef901324p.
H. Zhang, J. Gao, H. Meng and C.X. Li, Ind. Eng. Chem. Res., 51, 6658 (2012); doi:10.1021/ie3004545.
Y. Song, L. Zhang, HuiZhong, D. Shi, J. Xie and G. Zhao, Spectrochim. Acta A, 70, 943 (2008); doi:10.1016/j.saa.2008.01.029.
Y.Z. Song, A.F. Zhu, J.X. Lv, G.X. Gong, J.M. Xie, J.F. Zhou, Y. Ye and X.D. Zhong, Spectrochim. Acta A, 73, 96 (2009); doi:10.1016/j.saa.2009.01.030.
D.Q. Shi, X.F. Zhu and Y.Z. Song, Spectrochim. Acta A, 71, 1011 (2008); doi:10.1016/j.saa.2008.02.045.
Y.Z. Song, Can. J. Chem., 88, 676 (2010); doi:10.1139/V10-059.
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); doi:10.1063/1.464913.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT (2009).
R. Bonaccorsi, R. Cimiraglia and J. Tomasi, Comput. Chem., 4, 567 (1983); doi:10.1002/jcc.540040416.
J.L. Pascualahuir, E. Silla, J. Tomasi and R.J. Bonaccorsi, Comput. Chem., 8, 778 (1987); doi:10.1002/jcc.540080605.
S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys., 55, 117 (1981); doi:10.1016/0301-0104(81)85090-2.
E. Laviron, J. Electroanal. Chem., 52, 355 (1974); doi:10.1016/S0022-0728(74)80448-1.
E. Laviron, J. Electroanal. Chem., 101, 19 (1979); doi:10.1016/S0022-0728(79)80075-3.
F. Wang, Y. Wu, J. Liu and B. Ye, Electrochim. Acta, 54, 1408 (2009); doi:10.1016/j.electacta.2008.09.027.
F. Wang, Y. Xu, J. Zhao and S. Hu, Bioelectrochemistry, 70, 356 (2007); doi:10.1016/j.bioelechem.2006.05.003.
Y.H. Wu, X.B. Ji and S.S. Hu, Bioelectrochemistry, 64, 91 (2004); doi:10.1016/j.bioelechem.2004.03.005.
D. Dobos, Electrochemical Data, A Handbook for Electrochemists in Industry and Universities; Elsevier Scientific Publishing Company: Amsterdam-Oxford, New York, pp. 88-89 (1975).