Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study on Oxidation of 1,2-Dipropyldisulfane in Oxidative Desulfurization
Corresponding Author(s) : Y.Z. Song
Asian Journal of Chemistry,
Vol. 27 No. 3 (2015): Vol 27 Issue 3
Abstract
DFT calculations were performed for calculation of standard electrode potential for 1,2-dipropyldisulfane sulfone/2-dipropyldisulfane. The electrochemical behaviour of 1,2-dipropyldisulfane at gold electrode was investigated by cyclic voltammety and the results showed that experimental standard electrode potential for 1,2-dipropyldisulfane sulfone/1,2-dipropyldisulfane is 1.111 V, which is consistent with that of 1.067 V at B3LYP/6-31++g(d, p)-PCM level. The front orbit theory and Mülliken charges of moleculer explain well on the oxidation of 1,2-dipropyldisulfane in oxidative desulfurization. According to equilibrium theory the experimental equilibrium constant in the oxidative desulfurization system of 1,2-dipropyldisulfane/H2O2, is 2.27 × 1089, which is consistent with the theoretical equilibrium constant is 2.10 × 1095 at B3LYP/6-31++g(d, p)-PCM level, indicating that 1,2-dipropyldisulfane can be oxidized by H2O2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Winebrake, J.J. Corbett, E.H. Green, A. Lauer and V. Eyring, Environ. Sci. Technol., 43, 4776 (2009); doi:10.1021/es803224q.
- M. Yaseen, M. Shakirullah, I. Ahmad, A.U. Rahman, F.U. Rahman, M. Usman and R. Razzaq, J. Fuel Chem. Technol., 40, 714 (2012); doi:10.1016/S1872-5813(12)60027-9.
- V.M. Kogan, P.A. Nikulshin and N.N. Rozhdestvenskaya, Fuel, 100, 2 (2012); doi:10.1016/j.fuel.2011.11.016.
- S.A. Ali, S. Ahmed, K.W. Ahmed and M.A. Al-Saleh, Fuel Process. Technol., 98, 39 (2012); doi:10.1016/j.fuproc.2012.01.027.
- J. Bu, G. Loh, C.G. Gwie, S. Dewiyanti, M. Tasrif and A. Borgna, Chem. Eng. J., 166, 207 (2011); doi:10.1016/j.cej.2010.10.063.
- K.K. Sarda, A. Bhandari, K.K. Pant and S. Jain, Fuel, 93, 86 (2012); doi:10.1016/j.fuel.2011.10.020.
- M. Seredych, C.T. Wu, P. Brender, C.O. Ania, C. Vix-Guterl and T.J. Bandosz, Fuel, 92, 318 (2012); doi:10.1016/j.fuel.2011.08.007.
- C.D. Wilfred, C.F. Kiat, Z. Man, M.A. Bustam, M.I.M. Mutalib and C.Z. Phak, Fuel Process. Technol., 93, 85 (2012); doi:10.1016/j.fuproc.2011.09.018.
- I. Sharafutdinov, D. Stratiev, I. Shishkova, R. Dinkov, A. Batchvarov, P. Petkov and N. Rudnev, Fuel, 96, 556 (2012); doi:10.1016/j.fuel.2011.12.062.
- P. Agarwal and D.K. Sharma, Energy Fuels, 24, 518 (2010); doi:10.1021/ef900876j.
- W.A.W.A. Bakar, R. Ali, A.A.A. Kadir and W.N.A.W. Mokhtar, Fuel Process. Technol., 101, 78 (2012); doi:10.1016/j.fuproc.2012.04.004.
- X. Chen, D. Song, C. Asumana and G. Yu, J. Mol. Catal. Chem., 359, 8 (2012); doi:10.1016/j.molcata.2012.03.014.
- G. Yu, J. Zhao, D. Song, C. Asumana, X. Zhang and X. Chen, Ind. Eng. Chem. Res., 50, 11690 (2011); doi:10.1021/ie200735p.
- W.Y. Liu, Z.L. Lei and J.K. Wang, Energy Fuels, 15, 38 (2001); doi:10.1021/ef000039p.
- J. Wang, D. Zhao and K. Li, Energy Fuels, 24, 2527 (2010); doi:10.1021/ef901324p.
- H. Zhang, J. Gao, H. Meng and C.X. Li, Ind. Eng. Chem. Res., 51, 6658 (2012); doi:10.1021/ie3004545.
- Y. Song, L. Zhang, HuiZhong, D. Shi, J. Xie and G. Zhao, Spectrochim. Acta A, 70, 943 (2008); doi:10.1016/j.saa.2008.01.029.
- Y.Z. Song, A.F. Zhu, J.X. Lv, G.X. Gong, J.M. Xie, J.F. Zhou, Y. Ye and X.D. Zhong, Spectrochim. Acta, 73, 96 (2009); doi:10.1016/j.saa.2009.01.030.
- D.Q. Shi, X.F. Zhu and Y.Z. Song, Spectrochim. Acta, 71, 1011 (2008); doi:10.1016/j.saa.2008.02.045.
- Y.Z. Song, Can. J. Chem., 88, 676 (2010); doi:10.1139/V10-059.
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); doi:10.1063/1.464913.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- R. Bonaccorsi, R. Cimiraglia and J. Tomasi, Comput. Chem., 4, 567 (1983); doi:10.1002/jcc.540040416.
- J.L. Pascualahuir, E. Silla, J. Tomasi and R.J. Bonaccorsi, Comput. Chem., 8, 778 (1987); doi:10.1002/jcc.540080605.
- S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys., 55, 117 (1981); doi:10.1016/0301-0104(81)85090-2.
- E. Laviron, J. Electroanal. Chem., 52, 355 (1974); doi:10.1016/S0022-0728(74)80448-1.
- E. Laviron, J. Electroanal. Chem., 101, 19 (1979); doi:10.1016/S0022-0728(79)80075-3.
- F. Wang, Y. Wu, J. Liu and B. Ye, Electrochim. Acta, 54, 1408 (2009); doi:10.1016/j.electacta.2008.09.027.
- F. Wang, Y. Xu, J. Zhao and S. Hu, Bioelectrochemistry, 70, 356 (2007); doi:10.1016/j.bioelechem.2006.05.003.
- Y.H. Wu, X.B. Ji and S.S. Hu, Bioelectrochemistry, 64, 91 (2004); doi:10.1016/j.bioelechem.2004.03.005.
- D. Dobos, Electrochemical Data, A Handbook for Electrochemists in Industry and Universities; Elsevier Scientific Publishing Company: Amsterdam-Oxford; New York (1975).
References
J. Winebrake, J.J. Corbett, E.H. Green, A. Lauer and V. Eyring, Environ. Sci. Technol., 43, 4776 (2009); doi:10.1021/es803224q.
M. Yaseen, M. Shakirullah, I. Ahmad, A.U. Rahman, F.U. Rahman, M. Usman and R. Razzaq, J. Fuel Chem. Technol., 40, 714 (2012); doi:10.1016/S1872-5813(12)60027-9.
V.M. Kogan, P.A. Nikulshin and N.N. Rozhdestvenskaya, Fuel, 100, 2 (2012); doi:10.1016/j.fuel.2011.11.016.
S.A. Ali, S. Ahmed, K.W. Ahmed and M.A. Al-Saleh, Fuel Process. Technol., 98, 39 (2012); doi:10.1016/j.fuproc.2012.01.027.
J. Bu, G. Loh, C.G. Gwie, S. Dewiyanti, M. Tasrif and A. Borgna, Chem. Eng. J., 166, 207 (2011); doi:10.1016/j.cej.2010.10.063.
K.K. Sarda, A. Bhandari, K.K. Pant and S. Jain, Fuel, 93, 86 (2012); doi:10.1016/j.fuel.2011.10.020.
M. Seredych, C.T. Wu, P. Brender, C.O. Ania, C. Vix-Guterl and T.J. Bandosz, Fuel, 92, 318 (2012); doi:10.1016/j.fuel.2011.08.007.
C.D. Wilfred, C.F. Kiat, Z. Man, M.A. Bustam, M.I.M. Mutalib and C.Z. Phak, Fuel Process. Technol., 93, 85 (2012); doi:10.1016/j.fuproc.2011.09.018.
I. Sharafutdinov, D. Stratiev, I. Shishkova, R. Dinkov, A. Batchvarov, P. Petkov and N. Rudnev, Fuel, 96, 556 (2012); doi:10.1016/j.fuel.2011.12.062.
P. Agarwal and D.K. Sharma, Energy Fuels, 24, 518 (2010); doi:10.1021/ef900876j.
W.A.W.A. Bakar, R. Ali, A.A.A. Kadir and W.N.A.W. Mokhtar, Fuel Process. Technol., 101, 78 (2012); doi:10.1016/j.fuproc.2012.04.004.
X. Chen, D. Song, C. Asumana and G. Yu, J. Mol. Catal. Chem., 359, 8 (2012); doi:10.1016/j.molcata.2012.03.014.
G. Yu, J. Zhao, D. Song, C. Asumana, X. Zhang and X. Chen, Ind. Eng. Chem. Res., 50, 11690 (2011); doi:10.1021/ie200735p.
W.Y. Liu, Z.L. Lei and J.K. Wang, Energy Fuels, 15, 38 (2001); doi:10.1021/ef000039p.
J. Wang, D. Zhao and K. Li, Energy Fuels, 24, 2527 (2010); doi:10.1021/ef901324p.
H. Zhang, J. Gao, H. Meng and C.X. Li, Ind. Eng. Chem. Res., 51, 6658 (2012); doi:10.1021/ie3004545.
Y. Song, L. Zhang, HuiZhong, D. Shi, J. Xie and G. Zhao, Spectrochim. Acta A, 70, 943 (2008); doi:10.1016/j.saa.2008.01.029.
Y.Z. Song, A.F. Zhu, J.X. Lv, G.X. Gong, J.M. Xie, J.F. Zhou, Y. Ye and X.D. Zhong, Spectrochim. Acta, 73, 96 (2009); doi:10.1016/j.saa.2009.01.030.
D.Q. Shi, X.F. Zhu and Y.Z. Song, Spectrochim. Acta, 71, 1011 (2008); doi:10.1016/j.saa.2008.02.045.
Y.Z. Song, Can. J. Chem., 88, 676 (2010); doi:10.1139/V10-059.
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); doi:10.1063/1.464913.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT, 2009.
R. Bonaccorsi, R. Cimiraglia and J. Tomasi, Comput. Chem., 4, 567 (1983); doi:10.1002/jcc.540040416.
J.L. Pascualahuir, E. Silla, J. Tomasi and R.J. Bonaccorsi, Comput. Chem., 8, 778 (1987); doi:10.1002/jcc.540080605.
S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys., 55, 117 (1981); doi:10.1016/0301-0104(81)85090-2.
E. Laviron, J. Electroanal. Chem., 52, 355 (1974); doi:10.1016/S0022-0728(74)80448-1.
E. Laviron, J. Electroanal. Chem., 101, 19 (1979); doi:10.1016/S0022-0728(79)80075-3.
F. Wang, Y. Wu, J. Liu and B. Ye, Electrochim. Acta, 54, 1408 (2009); doi:10.1016/j.electacta.2008.09.027.
F. Wang, Y. Xu, J. Zhao and S. Hu, Bioelectrochemistry, 70, 356 (2007); doi:10.1016/j.bioelechem.2006.05.003.
Y.H. Wu, X.B. Ji and S.S. Hu, Bioelectrochemistry, 64, 91 (2004); doi:10.1016/j.bioelechem.2004.03.005.
D. Dobos, Electrochemical Data, A Handbook for Electrochemists in Industry and Universities; Elsevier Scientific Publishing Company: Amsterdam-Oxford; New York (1975).