Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Mechanism of Polychlorinated Dibenzo-p-dioxins Degradation by Ozone
Corresponding Author(s) : Zhengcheng Wen
Asian Journal of Chemistry,
Vol. 27 No. 3 (2015): Vol 27 Issue 3
Abstract
Despite of its fundamental importance, the reaction mechanism of polychlorinated dibenzo-p-dioxins destruction by using ozone still lacks detailed investigation. As a well-established method for investigating the chemical reactions, quantum chemical calculations were employed to investigate this reaction mechanism. Theoretical results showed that polychlorinated dibenzo-p-dioxins were gradually destructed by ozone via the cleavages of the C=C bonds and aromatic rings and the calculated activation energies were about 12 kcal/mol by the UB3LYP ++/6-311G(d,p)//UB3LYP/6-31G(d) method. In order to examine the rationality of the theoretical results, the experiment of the polychlorinated dibenzo-p-dioxins destruction by using ozone was also performed in this work. It was found that increase in the chlorite atoms on polychlorinated dibenzo-p-dioxins increased the theoretical activation energies. Whereas in the experimental results the removal efficiencies were found decreased. Obviously, the increasing of activation energies leads to the descending of removal efficiencies. It is suggested that the theoretical results were backed up quite well by the experimental results.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Rose, Environmental Contaminants: Dioxins, Furans and Dioxin-like Polychlorinated Biphenyls, Encyclopedia of Food Safety, Vol. 2, pp. 315-322 (2014).
- A. Schecter, L. Birnbaum, J.J. Ryan and J.D. Constable, Environ. Res., 101, 419 (2006); doi:10.1016/j.envres.2005.12.003.
- H. Tejima, I. Nakagawa, T. Shinoda and I. Maeda, Chemosphere, 32, 169 (1996); doi:10.1016/0045-6535(95)00243-X.
- J.- Yan, Z. Peng, S.- Lu, C.- Du, X.- Li, T. Chen, M.- Ni and K.- Cen, J. Environ. Sci., 19, 1404 (2007); doi:10.1016/S1001-0742(07)60229-0.
- M.B. Chang, K.H. Chi, S.H. Chang and J.W. Yeh, Chemosphere, 66, 1114 (2007); doi:10.1016/j.chemosphere.2006.06.020.
- A. Buekens and H. Huang, J. Hazard. Mater., 62, 1 (1998); doi:10.1016/S0304-3894(98)00153-8.
- P. Samaras, M. Blumenstock, D. Lenoir, K.-W. Schramm and A. Kettrup, Environ. Sci. Technol., 34, 5092 (2000); doi:10.1021/es0001207.
- A. Gervasini, G.C. Vezzoli and V. Ragaini, Catal. Today, 29, 449 (1996); doi:10.1016/0920-5861(95)00319-3.
- Y.-S. Shen and Y. Ku, Chemosphere, 38, 1855 (1999); doi:10.1016/S0045-6535(98)00400-7.
- K. Sekiguchi, A. Sanada and K. Sakamoto, Catal. Commun., 4, 247 (2003); doi:10.1016/S1566-7367(03)00047-5.
- C.W. Kwong, Y.H. Chao, K.S. Hui and M.P. Wan, Atmos. Environ., 42, 2300 (2008); doi:10.1016/j.atmosenv.2007.12.030.
- P. Haapea and T. Tuhkanen, J. Hazard. Mater., 136, 244 (2006); doi:10.1016/j.jhazmat.2005.12.033.
- M.-H. Yuan, C.-Y. Chang, J.-L. Shie, C.-C. Chang, J.-H. Chen and W.-T. Tsai, J. Hazard. Mater., 175, 809 (2010); doi:10.1016/j.jhazmat.2009.10.081.
- H.C. Wang, S.H. Chang, P.C. Hung, J.F. Hwang and M.B. Chang, Chemosphere, 71, 388 (2008); doi:10.1016/j.chemosphere.2007.08.041.
- H.C. Wang, S.H. Chang, P.C. Hung, J.F. Hwang and M.B. Chang, J. Hazard. Mater., 164, 1452 (2009); doi:10.1016/j.jhazmat.2008.09.093.
- M. Altarawneh, B.Z. Dlugogorski, E.M. Kennedy and J.C. Mackie, J. Phys. Chem. A, 111, 2563 (2007); doi:10.1021/jp065558t.
- M. Altarawneh, B.Z. Dlugogorski, E.M. Kennedy and J.C. Mackie, Progr. Energy Combus. Sci., 35, 245 (2009); doi:10.1016/j.pecs.2008.12.001.
- M.J. Frisch, et al., Gaussian 03, Gaussian, Inc., Pittsburgh, PA (2003).
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); doi:10.1103/PhysRevB.37.785.
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); doi:10.1063/1.464913.
- C. Gonzalez and H.B. Schlegel, J. Chem. Phys., 90, 2154 (1989); doi:10.1063/1.456010.
- M.J. Frisch, M. Head-Gordon and J.A. Pople, Chem. Phys. Lett., 166, 275 (1990); doi:10.1016/0009-2614(90)80029-D.
- J. Gauss and C. Cremer, Chem. Phys. Lett., 150, 280 (1988); doi:10.1016/0009-2614(88)80042-3.
- K.A. Wiberg, Tetrahedron, 24, 1083 (1968); doi:10.1016/0040-4020(68)88057-3.
- M. Van den Berg, L.S. Birnbaum, A.T.C. Bosveld, B. Brunström, Ph. Cook, M. Feeley, J.P. Giesy, A. Hanberg, R. Hasegawa, S.W. Kennedy, T. Kubiak, J.C. Larsen, F.X.R. van Leeuwen, A.K.D. Liem, C. Nolt, R.E. Peterson, L. Poellinger, S. Safe, D. Schrenk, D. Tillitt, M. Tysklind, M. Younes, F. Waern and T. Zacharewski, Environ. Health Persp., 106, 775 (1998).
- V.I. Babushok and W. Tsang, Chemosphere, 51, 1023 (2003); doi:10.1016/S0045-6535(02)00716-6.
- T. Oberg, Sci. Total Environ., 382, 153 (2007); doi:10.1016/j.scitotenv.2007.03.015.
- Z. Wen, Z. Wang, J. Xu, J. Zhou and K. Cen, Asian J. Chem., 24, 3707 (2012).
- Z. Wen, Z. Wang, J. Zhou and K. Cen, Ozone Sci. Eng., 31, 393 (2009); doi:10.1080/01919510903157879.
- F.A. Marc, J. Phys. Chem. A, 107, 7574 (2003).
References
M. Rose, Environmental Contaminants: Dioxins, Furans and Dioxin-like Polychlorinated Biphenyls, Encyclopedia of Food Safety, Vol. 2, pp. 315-322 (2014).
A. Schecter, L. Birnbaum, J.J. Ryan and J.D. Constable, Environ. Res., 101, 419 (2006); doi:10.1016/j.envres.2005.12.003.
H. Tejima, I. Nakagawa, T. Shinoda and I. Maeda, Chemosphere, 32, 169 (1996); doi:10.1016/0045-6535(95)00243-X.
J.- Yan, Z. Peng, S.- Lu, C.- Du, X.- Li, T. Chen, M.- Ni and K.- Cen, J. Environ. Sci., 19, 1404 (2007); doi:10.1016/S1001-0742(07)60229-0.
M.B. Chang, K.H. Chi, S.H. Chang and J.W. Yeh, Chemosphere, 66, 1114 (2007); doi:10.1016/j.chemosphere.2006.06.020.
A. Buekens and H. Huang, J. Hazard. Mater., 62, 1 (1998); doi:10.1016/S0304-3894(98)00153-8.
P. Samaras, M. Blumenstock, D. Lenoir, K.-W. Schramm and A. Kettrup, Environ. Sci. Technol., 34, 5092 (2000); doi:10.1021/es0001207.
A. Gervasini, G.C. Vezzoli and V. Ragaini, Catal. Today, 29, 449 (1996); doi:10.1016/0920-5861(95)00319-3.
Y.-S. Shen and Y. Ku, Chemosphere, 38, 1855 (1999); doi:10.1016/S0045-6535(98)00400-7.
K. Sekiguchi, A. Sanada and K. Sakamoto, Catal. Commun., 4, 247 (2003); doi:10.1016/S1566-7367(03)00047-5.
C.W. Kwong, Y.H. Chao, K.S. Hui and M.P. Wan, Atmos. Environ., 42, 2300 (2008); doi:10.1016/j.atmosenv.2007.12.030.
P. Haapea and T. Tuhkanen, J. Hazard. Mater., 136, 244 (2006); doi:10.1016/j.jhazmat.2005.12.033.
M.-H. Yuan, C.-Y. Chang, J.-L. Shie, C.-C. Chang, J.-H. Chen and W.-T. Tsai, J. Hazard. Mater., 175, 809 (2010); doi:10.1016/j.jhazmat.2009.10.081.
H.C. Wang, S.H. Chang, P.C. Hung, J.F. Hwang and M.B. Chang, Chemosphere, 71, 388 (2008); doi:10.1016/j.chemosphere.2007.08.041.
H.C. Wang, S.H. Chang, P.C. Hung, J.F. Hwang and M.B. Chang, J. Hazard. Mater., 164, 1452 (2009); doi:10.1016/j.jhazmat.2008.09.093.
M. Altarawneh, B.Z. Dlugogorski, E.M. Kennedy and J.C. Mackie, J. Phys. Chem. A, 111, 2563 (2007); doi:10.1021/jp065558t.
M. Altarawneh, B.Z. Dlugogorski, E.M. Kennedy and J.C. Mackie, Progr. Energy Combus. Sci., 35, 245 (2009); doi:10.1016/j.pecs.2008.12.001.
M.J. Frisch, et al., Gaussian 03, Gaussian, Inc., Pittsburgh, PA (2003).
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); doi:10.1103/PhysRevB.37.785.
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); doi:10.1063/1.464913.
C. Gonzalez and H.B. Schlegel, J. Chem. Phys., 90, 2154 (1989); doi:10.1063/1.456010.
M.J. Frisch, M. Head-Gordon and J.A. Pople, Chem. Phys. Lett., 166, 275 (1990); doi:10.1016/0009-2614(90)80029-D.
J. Gauss and C. Cremer, Chem. Phys. Lett., 150, 280 (1988); doi:10.1016/0009-2614(88)80042-3.
K.A. Wiberg, Tetrahedron, 24, 1083 (1968); doi:10.1016/0040-4020(68)88057-3.
M. Van den Berg, L.S. Birnbaum, A.T.C. Bosveld, B. Brunström, Ph. Cook, M. Feeley, J.P. Giesy, A. Hanberg, R. Hasegawa, S.W. Kennedy, T. Kubiak, J.C. Larsen, F.X.R. van Leeuwen, A.K.D. Liem, C. Nolt, R.E. Peterson, L. Poellinger, S. Safe, D. Schrenk, D. Tillitt, M. Tysklind, M. Younes, F. Waern and T. Zacharewski, Environ. Health Persp., 106, 775 (1998).
V.I. Babushok and W. Tsang, Chemosphere, 51, 1023 (2003); doi:10.1016/S0045-6535(02)00716-6.
T. Oberg, Sci. Total Environ., 382, 153 (2007); doi:10.1016/j.scitotenv.2007.03.015.
Z. Wen, Z. Wang, J. Xu, J. Zhou and K. Cen, Asian J. Chem., 24, 3707 (2012).
Z. Wen, Z. Wang, J. Zhou and K. Cen, Ozone Sci. Eng., 31, 393 (2009); doi:10.1080/01919510903157879.
F.A. Marc, J. Phys. Chem. A, 107, 7574 (2003).