Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetic Study of Boron Oxide Prepared by Dehydration of Boric Acid
Corresponding Author(s) : Jiao Xu
Asian Journal of Chemistry,
Vol. 27 No. 3 (2015): Vol 27 Issue 3
Abstract
The kinetic parameters of dehydration of boric acid had been investigated by using TG-DTG data and
the Doyle method. The reaction took place in two stages and the demarcation point of the two stages
was near at a = 0.63. The dehydration was completed with a final solid weight of 56.29 % with two
reaction stages in series in the temperature range of 100-800 °C. The activation energy E and frequency
factor K for the two stages are143.919 kJ/mol, 3.1874 × 1014 and 69.902 kJ/mol, 2.52367 × 105,
respectively. The reaction rate expressions were:
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Kakiage, N. Tahara, I. Yanase and H. Kobayashi, Mater. Lett., 65, 1839 (2011); doi:10.1016/j.matlet.2011.03.046.
- R.A. Smith, J. Non-Cryst. Solids, 84, 421 (1986); doi:10.1016/0022-3093(86)90805-7.
- E.E. Horopanitis, G. Perentzis, A. Beck, L. Guczi, G. Peto and L. Papadimitriou, Mater. Sci. Eng. B, 165, 156 (2009); doi:10.1016/j.mseb.2009.09.015.
- A.W. Weimer, R.P. Roach, C.N. Haney, W.G. Moore and W. Rafaniello, AIChE J., 37, 759 (1991); doi:10.1002/aic.690370513.
- N.A. Ghoneim and M.M. Halawa, Thermochim. Acta, 83, 341 (1985); doi:10.1016/0040-6031(85)87017-9.
- U.G. Beker and N. Bulutcu, Chem. Eng. Res. Des., 74(A1), 133 (1996).
- T. Batar, B. Kahraman, E. Cirit and M.S. Celik, Int. J. Miner. Process., 54, 99 (1998); doi:10.1016/S0301-7516(98)00008-8.
- W.H. Zachariasen, Acta Crystallogr. A, 16, 380 (1963); doi:10.1107/S0365110X63001018.
- A. Mergen, Ind. Ceram., 24, 23 (2004).
- F. Sevim, F. Demir, M. Bilen and H. Okur, Korean J. Chem. Eng., 23, 736 (2006); doi:10.1007/BF02705920.
- Y. Kang, J.S. Shim, S.H. Cho, M.J. Choi and K.W. Lee, J. Chem. Technol. Biotechnol., 63, 313 (1995); doi:10.1002/jctb.280630403.
- S. Şener, G. Özbayoglu and S. Demirci, Thermochim. Acta, 362, 107 (2000); doi:10.1016/S0040-6031(00)00584-0.
- J.W. Park, S.C. Oh, H.P. Lee, H.T. Kim and K.O. Yoo, Korean J. Chem. Eng., 17, 489 (2000); doi:10.1007/BF02707154.
- Y .Yun and G.B. Lee, Korean J. Chem. Eng., 16, 798 (1999); doi:10.1007/BF02698355.
- S. Balci, N.A. Sezgi and E. Eren, Ind. Eng. Chem. Res., 51, 11091 (2012); doi:10.1021/ie300685x.
References
M. Kakiage, N. Tahara, I. Yanase and H. Kobayashi, Mater. Lett., 65, 1839 (2011); doi:10.1016/j.matlet.2011.03.046.
R.A. Smith, J. Non-Cryst. Solids, 84, 421 (1986); doi:10.1016/0022-3093(86)90805-7.
E.E. Horopanitis, G. Perentzis, A. Beck, L. Guczi, G. Peto and L. Papadimitriou, Mater. Sci. Eng. B, 165, 156 (2009); doi:10.1016/j.mseb.2009.09.015.
A.W. Weimer, R.P. Roach, C.N. Haney, W.G. Moore and W. Rafaniello, AIChE J., 37, 759 (1991); doi:10.1002/aic.690370513.
N.A. Ghoneim and M.M. Halawa, Thermochim. Acta, 83, 341 (1985); doi:10.1016/0040-6031(85)87017-9.
U.G. Beker and N. Bulutcu, Chem. Eng. Res. Des., 74(A1), 133 (1996).
T. Batar, B. Kahraman, E. Cirit and M.S. Celik, Int. J. Miner. Process., 54, 99 (1998); doi:10.1016/S0301-7516(98)00008-8.
W.H. Zachariasen, Acta Crystallogr. A, 16, 380 (1963); doi:10.1107/S0365110X63001018.
A. Mergen, Ind. Ceram., 24, 23 (2004).
F. Sevim, F. Demir, M. Bilen and H. Okur, Korean J. Chem. Eng., 23, 736 (2006); doi:10.1007/BF02705920.
Y. Kang, J.S. Shim, S.H. Cho, M.J. Choi and K.W. Lee, J. Chem. Technol. Biotechnol., 63, 313 (1995); doi:10.1002/jctb.280630403.
S. Şener, G. Özbayoglu and S. Demirci, Thermochim. Acta, 362, 107 (2000); doi:10.1016/S0040-6031(00)00584-0.
J.W. Park, S.C. Oh, H.P. Lee, H.T. Kim and K.O. Yoo, Korean J. Chem. Eng., 17, 489 (2000); doi:10.1007/BF02707154.
Y .Yun and G.B. Lee, Korean J. Chem. Eng., 16, 798 (1999); doi:10.1007/BF02698355.
S. Balci, N.A. Sezgi and E. Eren, Ind. Eng. Chem. Res., 51, 11091 (2012); doi:10.1021/ie300685x.