Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetics and Reaction Mechanism of Catalytic Oxidation of Ammonium Sulfite
Corresponding Author(s) : Jun Lu
Asian Journal of Chemistry,
Vol. 26 No. 1 (2014): Vol 26 Issue 1
Abstract
The effects of five catalysts on the oxidation rate of ammonium sulfite were compared by intrinsic experiments using self-designed bath reactor. Fe2+ was turned out to be a good catalyst for oxidation of ammonium sulfite. Using stirred bubbling reactor, the kinetics of catalytic oxidation of sulfite in the ammonium-based wet flue gas desulfurization process were investigated by varying concentrations of (NH4)2SO4, (NH4)2SO3 and Fe2+, pH, air flow rate and temperature. The reaction was found to be first order with respect to ammonium sulfite, 0.4 order with respect to Fe2+ and the oxidation could reach the maximum rate when pH value was close to 6. The mechanism of the oxidation was discussed and concluded that the oxidation is controlled by diffusion of oxygen.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.M. Zhou and Z. Chen, Guangdong Chem. Ind. (China), 34, 5 (2007).
- H.W. Kang, Y.B. Zhou and J.P. Li, Guangdong Chem. Ind. (China), 37, 132 (2009).
- L.D. Wang and Y. Zhao, Chem. Eng. J., 136, 221 (2008); doi:10.1016/j.cej.2007.04.004.
- T. Gürkan, A. Nufal and I. Eroglu, Chem. Eng. Sci., 47, 3801 (1992); doi:10.1016/0009-2509(92)85100-P.
- J.H. Zhou, W. Li and W.D. Xiao, Chem. Eng. Sci., 55, 5637 (2000); doi:10.1016/S0009-2509(00)00197-4.
- X.L. Long, W. Li, W. Xiao and W. Yuan, J. Hazard. Mater., 129, 260 (2006); doi:10.1016/j.jhazmat.2005.08.035.
- Y. Jia, Q. Zhong, X. Fan and X. Wang, Chem. Eng. J., 164, 132 (2010); doi:10.1016/j.cej.2010.08.041.
- V. Linek and V. Vacek, Chem. Eng. Sci., 36, 1747 (1981); doi:10.1016/0009-2509(81)80124-8.
- B. Zhao, Y. Li, H.L. Tong, Y.Q. Zhuo, L. Zhang, J. Shi and C.H. Chen, Chem. Eng. Sci., 60, 863 (2005); doi:10.1016/j.ces.2004.09.064.
- A. Lancia, D. Musmarra, M. Prisciandaro and M. Tammaro, Chem. Eng. Sci., 54, 3019 (1999); doi:10.1016/S0009-2509(98)00483-7.
- D. Karatza, M. Prisciandaro, A. Lancia and D. Musmarra, Chem. Eng. Sci., 60, 1497 (2005); doi:10.1016/j.ces.2004.10.012.
- D. Karatza, M. Prisciandaro, A. Lancia and D. Musmarra, Chem. Eng. J., 145, 285 (2008); doi:10.1016/j.cej.2008.07.031.
- A. Lancia and D. Musmarra, Environ. Sci. Technol., 33, 1931 (1999); doi:10.1021/es9805425.
- E. Narita, F. Lawson and K.N. Han, Hydrometallurgy, 10, 21 (1983): doi: 10.1016/0304-386X(83)90074-9.
- Y. Iwai, H. Eya, Y. Itoh, Y. Aral and K. Takeuchi, Fluid Phase Equilib., 83, 271 (1993); doi: 10.1016/0378-3812(93)87030-5.
- L.D. Wang, Y.L. Ma, G. Yuan, W. Zhang, Y. Zhang and J.M. Hao, Sci. Sinica Chim. (China), 40, 1172 (2010).
- B. Zhao, Y. Li, Y. Zhou and C.H. Chen, Korean J. Chem. Eng., 24, 471 (2006).
- J.Z. Zhang and F.J. Millero, Geochim. Cosmochim. Acta, 55, 677 (1991); doi:10.1016/0016-7037(91)90333-Z.
- Z. Shen, S. Guo, W. Kang, K. Zeng, M. Yin, J. Tian and J. Lu, Ind. Eng. Chem. Res., 51, 4192 (2012); doi:10.1021/ie300163v.
References
Z.M. Zhou and Z. Chen, Guangdong Chem. Ind. (China), 34, 5 (2007).
H.W. Kang, Y.B. Zhou and J.P. Li, Guangdong Chem. Ind. (China), 37, 132 (2009).
L.D. Wang and Y. Zhao, Chem. Eng. J., 136, 221 (2008); doi:10.1016/j.cej.2007.04.004.
T. Gürkan, A. Nufal and I. Eroglu, Chem. Eng. Sci., 47, 3801 (1992); doi:10.1016/0009-2509(92)85100-P.
J.H. Zhou, W. Li and W.D. Xiao, Chem. Eng. Sci., 55, 5637 (2000); doi:10.1016/S0009-2509(00)00197-4.
X.L. Long, W. Li, W. Xiao and W. Yuan, J. Hazard. Mater., 129, 260 (2006); doi:10.1016/j.jhazmat.2005.08.035.
Y. Jia, Q. Zhong, X. Fan and X. Wang, Chem. Eng. J., 164, 132 (2010); doi:10.1016/j.cej.2010.08.041.
V. Linek and V. Vacek, Chem. Eng. Sci., 36, 1747 (1981); doi:10.1016/0009-2509(81)80124-8.
B. Zhao, Y. Li, H.L. Tong, Y.Q. Zhuo, L. Zhang, J. Shi and C.H. Chen, Chem. Eng. Sci., 60, 863 (2005); doi:10.1016/j.ces.2004.09.064.
A. Lancia, D. Musmarra, M. Prisciandaro and M. Tammaro, Chem. Eng. Sci., 54, 3019 (1999); doi:10.1016/S0009-2509(98)00483-7.
D. Karatza, M. Prisciandaro, A. Lancia and D. Musmarra, Chem. Eng. Sci., 60, 1497 (2005); doi:10.1016/j.ces.2004.10.012.
D. Karatza, M. Prisciandaro, A. Lancia and D. Musmarra, Chem. Eng. J., 145, 285 (2008); doi:10.1016/j.cej.2008.07.031.
A. Lancia and D. Musmarra, Environ. Sci. Technol., 33, 1931 (1999); doi:10.1021/es9805425.
E. Narita, F. Lawson and K.N. Han, Hydrometallurgy, 10, 21 (1983): doi: 10.1016/0304-386X(83)90074-9.
Y. Iwai, H. Eya, Y. Itoh, Y. Aral and K. Takeuchi, Fluid Phase Equilib., 83, 271 (1993); doi: 10.1016/0378-3812(93)87030-5.
L.D. Wang, Y.L. Ma, G. Yuan, W. Zhang, Y. Zhang and J.M. Hao, Sci. Sinica Chim. (China), 40, 1172 (2010).
B. Zhao, Y. Li, Y. Zhou and C.H. Chen, Korean J. Chem. Eng., 24, 471 (2006).
J.Z. Zhang and F.J. Millero, Geochim. Cosmochim. Acta, 55, 677 (1991); doi:10.1016/0016-7037(91)90333-Z.
Z. Shen, S. Guo, W. Kang, K. Zeng, M. Yin, J. Tian and J. Lu, Ind. Eng. Chem. Res., 51, 4192 (2012); doi:10.1021/ie300163v.