Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Optimization of Supercritical Extraction of Oil from Onion by Supercritical CO2
Corresponding Author(s) : Jian-Zhong Jin
Asian Journal of Chemistry,
Vol. 26 No. 1 (2014): Vol 26 Issue 1
Abstract
In this study, the supercritical CO2 extracting technology was applied to extract volatile oil from freeze-dried onion powders, single factor experiment and orthogonal array design were used to study the influence of extracting pressure, extracting temperature, extracting time and flow rate of CO2 on the extracting ratio of volatile oil. The optimum extracting parameters were established with extracting pressure of 20 MPa, extracting temperature of 35 °C, flow rate of CO2 of 14 kg·h-1 and the extracting time of 2.5 h. The optimum technology for supercritical CO2 extraction of volatile oil from freeze-dried onion powders was very efficient and extraction yield is 0.53 %.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.L. Ye and Y.F. Lai, Chem. Eng. Technol., 35, 646 (2012); doi:10.1002/ceat.201100217.
- G. Griffiths, L. Trueman, T. Crowther, B. Thomas and B. Smith, Phytother. Res., 16, 603 (2002); doi:10.1002/ptr.1222.
- N. Benkeblia, LWT-Food Sci. Technol, 37, 263 (2004); doi:10.1016/j.lwt.2003.09.001.
- C.L. Ye, D.H. Dai and W.L. Hu, Food Control, 30, 48 (2013); doi:10.1016/j.foodcont.2012.07.033.
- A. Dron, D.E. Guyeru, D.A. Gage and C.T. Lira, J. Food Process Eng., 20, 107 (1997); doi:10.1111/j.1745-4530.1997.tb00414.x.
- N.K. Sinha, D.E. Guyer, D.A. Gage and C.T. Lira, J. Agric. Food Chem., 40, 842 (1992); doi:10.1021/jf00017a027.
- E. Block, S. Naganathan, D. Putman and S.H. Zhao, J. Agric. Food Chem., 40, 2418 (1992); doi:10.1021/jf00024a017.
- Q. H. Zhang and Z.P. Wang, Food Drug, 11, 62(2009).
- Y. Wen, China Pharmaceuticals, 19, 54 (2010).
- G. M. Svetlana, D. L. Zika, P. Z. Zoran and S. V. Senka, Hem. Ind., 65, 147 (2011).
- J.A.R. Uribe, J.I.N. Perez, H.C. Kauil, G.R. Rubio and C.G. Alcocer, J. Supercrit. Fluids, 56, 174 (2011); doi:10.1016/j.supflu.2010.12.007.
- A. Piras, A. Rosa, D. Falconieri, S. Porcedda, M.A. Dessì and B. Marongiu, Molecules, 14, 2573 (2009); doi:10.3390/molecules14072573.
- K.L. Nyam, C.P. Tan, O.M. Lai, K. Long and Y.B. Che Man, Food Bioprocess Technol., 4, 1432 (2011); doi:10.1007/s11947-009-0253-4.
- M. Bravi, F. Spinoglio, N. Verdone, M. Adami, A. Aliboni, A. D’Andrea, A. De Santis and D. Ferri, J. Food Eng., 78, 488 (2007); doi:10.1016/j.jfoodeng.2005.10.017.
References
C.L. Ye and Y.F. Lai, Chem. Eng. Technol., 35, 646 (2012); doi:10.1002/ceat.201100217.
G. Griffiths, L. Trueman, T. Crowther, B. Thomas and B. Smith, Phytother. Res., 16, 603 (2002); doi:10.1002/ptr.1222.
N. Benkeblia, LWT-Food Sci. Technol, 37, 263 (2004); doi:10.1016/j.lwt.2003.09.001.
C.L. Ye, D.H. Dai and W.L. Hu, Food Control, 30, 48 (2013); doi:10.1016/j.foodcont.2012.07.033.
A. Dron, D.E. Guyeru, D.A. Gage and C.T. Lira, J. Food Process Eng., 20, 107 (1997); doi:10.1111/j.1745-4530.1997.tb00414.x.
N.K. Sinha, D.E. Guyer, D.A. Gage and C.T. Lira, J. Agric. Food Chem., 40, 842 (1992); doi:10.1021/jf00017a027.
E. Block, S. Naganathan, D. Putman and S.H. Zhao, J. Agric. Food Chem., 40, 2418 (1992); doi:10.1021/jf00024a017.
Q. H. Zhang and Z.P. Wang, Food Drug, 11, 62(2009).
Y. Wen, China Pharmaceuticals, 19, 54 (2010).
G. M. Svetlana, D. L. Zika, P. Z. Zoran and S. V. Senka, Hem. Ind., 65, 147 (2011).
J.A.R. Uribe, J.I.N. Perez, H.C. Kauil, G.R. Rubio and C.G. Alcocer, J. Supercrit. Fluids, 56, 174 (2011); doi:10.1016/j.supflu.2010.12.007.
A. Piras, A. Rosa, D. Falconieri, S. Porcedda, M.A. Dessì and B. Marongiu, Molecules, 14, 2573 (2009); doi:10.3390/molecules14072573.
K.L. Nyam, C.P. Tan, O.M. Lai, K. Long and Y.B. Che Man, Food Bioprocess Technol., 4, 1432 (2011); doi:10.1007/s11947-009-0253-4.
M. Bravi, F. Spinoglio, N. Verdone, M. Adami, A. Aliboni, A. D’Andrea, A. De Santis and D. Ferri, J. Food Eng., 78, 488 (2007); doi:10.1016/j.jfoodeng.2005.10.017.