Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Variation of Charantin Content in Different Bitter Melon Cultivars
Corresponding Author(s) : Kee Woong Park
Asian Journal of Chemistry,
Vol. 26 No. 1 (2014): Vol 26 Issue 1
Abstract
Ten bitter melon cultivars (5 from Japan and 5 from the Philippines) were evaluated to distinguish their charantin content. The charantin content varied widely among the cultivars from the 2 locations. In general, the Japanese cultivars contained higher cahrantin levels than the Philippine ones, with the highest content found in Peacock and the lowest in the cultivar Trident 357 from the Philippines. The amount of charantin was 23.8 and 18.9 times higher in the Japanese cultivars Peacock and Nikko, respectively, than that in Trident 357. Although the Philippine cultivars contained a lower amount of charantin compared to the Japanese ones, the cultivar Sta Monica contained the highest amount of charantin compared to other Philippine cultivars. Based on these results, the cultivar Peacock could potentially be used as a source of charantin.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Basch, S. Gabardi and C. Ulbricht, Am. J. Health Syst. Pharm., 60, 356 (2003).
- M.B. Krawinkel and G.B. Keding, Nutr. Rev., 64, 331 (2006).
- W.T. Cefalu, J. Ye and Z.Q. Wang, Endocr. Metab. Immune Disord. Drug Targets, 8, 78 (2008); doi:10.2174/187153008784534376.
- L. Leung, R. Birtwhistle, J. Kotecha, S. Hannah and S. Cuthbertson, Br. J. Nutr., 102, 1703 (2009); doi:10.1017/S0007114509992054.
- R. Nahas and M. Moher, Can. Fam. Physician, 55, 591 (2009).
- T.B. Ng, W.Y. Chan and H.W. Yeung, Gen. Pharmacol., 23, 575 (1992); doi:10.1016/0306-3623(92)90131-3.
- P. Scartezzini and E. Speroni, J. Ethnopharmacol., 71, 23 (2000); doi:10.1016/S0378-8741(00)00213-0.
- J.K. Grover and S.P. Yadav, J. Ethnopharmacol., 93, 123 (2004); doi:10.1016/j.jep.2004.03.035.
- J. Pitipanapong, S. Chitprasert, M. Goto, W. Jiratchariyakul, M. Sasaki and A. Shotipruk, Sep. Purif. Technol., 52, 416 (2007); doi:10.1016/j.seppur.2005.11.037.
- S.D. Habicht, V. Kind, S. Rudloff, C. Borsch, A.S. Mueller, J. Pallauf, R. Yang and M.B. Krawinkel, Food Chem., 126, 172 (2011); doi:10.1016/j.foodchem.2010.10.094.
- Y. Oishi, T. Sakamoto, H. Udagawa, H. Taniguchi, K. Kobayashi-Hattori, Y. Ozawa and T. Takita, Biosci. Biotechnol. Biochem., 71, 735 (2007); doi:10.1271/bbb.60570.
- L. Harinantenaina, M. Tanaka, S. Takaoka, M. Oda, O. Mogami, M. Uchida and Y. Asakawa, Chem. Pharm. Bull. (Tokyo), 54, 1017 (2006); doi:10.1248/cpb.54.1017.
References
E. Basch, S. Gabardi and C. Ulbricht, Am. J. Health Syst. Pharm., 60, 356 (2003).
M.B. Krawinkel and G.B. Keding, Nutr. Rev., 64, 331 (2006).
W.T. Cefalu, J. Ye and Z.Q. Wang, Endocr. Metab. Immune Disord. Drug Targets, 8, 78 (2008); doi:10.2174/187153008784534376.
L. Leung, R. Birtwhistle, J. Kotecha, S. Hannah and S. Cuthbertson, Br. J. Nutr., 102, 1703 (2009); doi:10.1017/S0007114509992054.
R. Nahas and M. Moher, Can. Fam. Physician, 55, 591 (2009).
T.B. Ng, W.Y. Chan and H.W. Yeung, Gen. Pharmacol., 23, 575 (1992); doi:10.1016/0306-3623(92)90131-3.
P. Scartezzini and E. Speroni, J. Ethnopharmacol., 71, 23 (2000); doi:10.1016/S0378-8741(00)00213-0.
J.K. Grover and S.P. Yadav, J. Ethnopharmacol., 93, 123 (2004); doi:10.1016/j.jep.2004.03.035.
J. Pitipanapong, S. Chitprasert, M. Goto, W. Jiratchariyakul, M. Sasaki and A. Shotipruk, Sep. Purif. Technol., 52, 416 (2007); doi:10.1016/j.seppur.2005.11.037.
S.D. Habicht, V. Kind, S. Rudloff, C. Borsch, A.S. Mueller, J. Pallauf, R. Yang and M.B. Krawinkel, Food Chem., 126, 172 (2011); doi:10.1016/j.foodchem.2010.10.094.
Y. Oishi, T. Sakamoto, H. Udagawa, H. Taniguchi, K. Kobayashi-Hattori, Y. Ozawa and T. Takita, Biosci. Biotechnol. Biochem., 71, 735 (2007); doi:10.1271/bbb.60570.
L. Harinantenaina, M. Tanaka, S. Takaoka, M. Oda, O. Mogami, M. Uchida and Y. Asakawa, Chem. Pharm. Bull. (Tokyo), 54, 1017 (2006); doi:10.1248/cpb.54.1017.