Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Immobilization of Soybean Hulls Peroxidase on Activated Carbon
Corresponding Author(s) : Xiadong Jiang
Asian Journal of Chemistry,
Vol. 26 No. 3 (2014): Vol 26 Issue 3
Abstract
To lay a scientific foundation for the development of an immobilized enzyme-based process for oxidizing dissolved organics in aqueous solution, the immobilization process of soybean hulls peroxidase (SBP) on activated carbon was investigated. Soybean hulls peroxidase (SBP, EC 1.11.1.7) was extracted from soybean hulls in phosphate buffer solution (0.1 M, pH 6.0) and then purified. The molecular weight of the soybean hulls peroxidase is 37 kDa. The soybean hulls peroxidase was immobilized onto activated carbon, the immobilization of soybean hulls peroxidase at pH 5.0 and higher temperature (50 ºC) gave rise to the highest immobilization yield. Equilibrium adsorption models were applied to quantify the effectiveness of immobilization. Adsorption of soybean hulls peroxidase on activated carbon followed the Langmuir model better than the Freundlich model. Fourier transform infrared spectra (FT-IR) provide evidence of the soybean hulls peroxidase enzyme immobilized onto the carbon matrices. The morphology of the native activated carbon and the immobilized soybean hulls peroxidase was confirmed by scanning electron microscopy (SEM).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Karam and J.A. Nicell, J. Chem. Technol. Biotechnol., 69, 141 (1997); doi:10.1002/(SICI)1097-4660(199706)69:2<141::AID-JCTB694>3.0.CO;2-U.
- D.J. Sessa and R.L. Anderson, J. Agric. Food Chem., 29, 960 (1981); doi:10.1021/jf00107a019.
- J.W. Gillikin and J.S. Graham, Plant Physiol., 96, 214 (1991); doi:10.1104/pp.96.1.214.
- M. Gijzen, R. van Huystee and R.I. Buzzell, Plant Physiol., 103, 1061 (1993); doi:10.1104/pp.103.4.1061.
- J.P. McEldoon and J.S. Dordick, Biotechnol. Prog., 12, 555 (1996); doi:10.1021/bp960010x.
- J.P. McEldoon, A.R. Pokora and J.S. Dordick, Enzyme Microb. Technol., 17, 359 (1995); doi:10.1016/0141-0229(94)00060-3.
- I.D. Buchanan, J.A. Nicell and M. Wagner, J. Environ. Engin.-ASCE, 124, 794 (1998); doi:10.1061/(ASCE)0733-9372(1998)124:9(794).
- J. Dec and J.M. Bollag, Arch. Environ. Contam. Toxicol., 19, 543 (1990);doi:10.1007/BF01059073.
- A.M. Klibanov, T.-M. Tu and K.P. Scott, Science, 221, 259 (1983); doi:10.1126/science.221.4607.259-a.
- C.S. Shen, Y. Wen, X. Kang and W. Liu, Chem. Eng. J., 166, 474 (2011); doi:10.1016/j.cej.2010.10.075.
- F. Rojas-Melgarejo, J.N. Rodríguez-López, F. García-Cánovas and P.A. García-Ruiz, Process Biochem., 39, 1455 (2004); doi:10.1016/S0032-9592(03)00276-0.
- J.L. Gomez, A. Bódalo, E. Gómez, J. Bastida, A.M. Hidalgo and M. Gómez, Enzyme Microb. Technol., 39, 1016 (2006); doi:10.1016/j.enzmictec.2006.02.008.
- U.J. Trivedi, A.S. Bassi and J. Zhu, Can. J. Chem. Eng., 84, 239 (2006); doi:10.1002/cjce.5450840211.
- B. Wang, B. Li, Z. Wang, G. Xu, Q. Wang and S. Dong, Anal. Chem., 71, 1935 (1999); doi:10.1021/ac980940q.
- S. Nakamoto and N. Machida, Water Res., 26, 49 (1992); doi:10.1016/0043-1354(92)90110-P.
- S. Davis and R.G. Burns, Appl. Microbiol. Biotechnol., 37, 474 (1992);doi:10.1007/BF00180972.
- D.S. Rodrigues, G.P. Cavalcante, A.L.O. Ferreira and L.R.B. Gonçalves, Chem. Biochem. Eng. Quar., 20, 125 (2008).
- V.A. Cooper and J.A. Nicell, Water Res., 30, 954 (1996); doi:10.1016/0043-1354(95)00237-5.
- M. Wagner and J.A. Nicell, Water Sci. Technol., 43, 253 (2001).
- K. Tatsumi, S. Wada and H. Ichikawa, Biotechnol. Bioeng., 51, 126 (1996); doi:10.1002/(SICI)1097-0290(19960705)51:1<126::AID-BIT15>3.0.CO;2-O.
- K.B. Lee, M.B. Gu and S.-H. Moon, Water Res., 37, 983 (2003);doi: 10.1016/S0043-1354(02)00453-0.
- J. Shim, G.-Y. Kim, K.-H. Yeon, S.-H. Cho, J.-J. Woo and S.-H. Moon, Korean J. Chem. Eng., 24, 72 (2007); doi:10.1007/s11814-007-5012-5.
- F. Rojas-Melgarejo, J.N. Rodríguez-López, F. García-Cánovas and P.A. García-Ruiz, Process Biochem., 39, 1455 (2004); doi:10.1016/S0032-9592(03)00276-0.
- C. Flock, A. Bassi and M. Gijzen, J. Chem. Technol. Biotechnol., 74, 303 (1999); doi:10.1002/(SICI)1097-4660(199904)74:4<303::AID-JCTB38>3.0.CO;2-B.
- A. Bódalo, J. Bastida, M.F. Máximo, M.C. Montiel, M. Gómez and M.D. Murcia, Bioprocess Biosyst, 31, 587 (2008); doi:10.1007/s00449-008-0207-7.
References
J. Karam and J.A. Nicell, J. Chem. Technol. Biotechnol., 69, 141 (1997); doi:10.1002/(SICI)1097-4660(199706)69:2<141::AID-JCTB694>3.0.CO;2-U.
D.J. Sessa and R.L. Anderson, J. Agric. Food Chem., 29, 960 (1981); doi:10.1021/jf00107a019.
J.W. Gillikin and J.S. Graham, Plant Physiol., 96, 214 (1991); doi:10.1104/pp.96.1.214.
M. Gijzen, R. van Huystee and R.I. Buzzell, Plant Physiol., 103, 1061 (1993); doi:10.1104/pp.103.4.1061.
J.P. McEldoon and J.S. Dordick, Biotechnol. Prog., 12, 555 (1996); doi:10.1021/bp960010x.
J.P. McEldoon, A.R. Pokora and J.S. Dordick, Enzyme Microb. Technol., 17, 359 (1995); doi:10.1016/0141-0229(94)00060-3.
I.D. Buchanan, J.A. Nicell and M. Wagner, J. Environ. Engin.-ASCE, 124, 794 (1998); doi:10.1061/(ASCE)0733-9372(1998)124:9(794).
J. Dec and J.M. Bollag, Arch. Environ. Contam. Toxicol., 19, 543 (1990);doi:10.1007/BF01059073.
A.M. Klibanov, T.-M. Tu and K.P. Scott, Science, 221, 259 (1983); doi:10.1126/science.221.4607.259-a.
C.S. Shen, Y. Wen, X. Kang and W. Liu, Chem. Eng. J., 166, 474 (2011); doi:10.1016/j.cej.2010.10.075.
F. Rojas-Melgarejo, J.N. Rodríguez-López, F. García-Cánovas and P.A. García-Ruiz, Process Biochem., 39, 1455 (2004); doi:10.1016/S0032-9592(03)00276-0.
J.L. Gomez, A. Bódalo, E. Gómez, J. Bastida, A.M. Hidalgo and M. Gómez, Enzyme Microb. Technol., 39, 1016 (2006); doi:10.1016/j.enzmictec.2006.02.008.
U.J. Trivedi, A.S. Bassi and J. Zhu, Can. J. Chem. Eng., 84, 239 (2006); doi:10.1002/cjce.5450840211.
B. Wang, B. Li, Z. Wang, G. Xu, Q. Wang and S. Dong, Anal. Chem., 71, 1935 (1999); doi:10.1021/ac980940q.
S. Nakamoto and N. Machida, Water Res., 26, 49 (1992); doi:10.1016/0043-1354(92)90110-P.
S. Davis and R.G. Burns, Appl. Microbiol. Biotechnol., 37, 474 (1992);doi:10.1007/BF00180972.
D.S. Rodrigues, G.P. Cavalcante, A.L.O. Ferreira and L.R.B. Gonçalves, Chem. Biochem. Eng. Quar., 20, 125 (2008).
V.A. Cooper and J.A. Nicell, Water Res., 30, 954 (1996); doi:10.1016/0043-1354(95)00237-5.
M. Wagner and J.A. Nicell, Water Sci. Technol., 43, 253 (2001).
K. Tatsumi, S. Wada and H. Ichikawa, Biotechnol. Bioeng., 51, 126 (1996); doi:10.1002/(SICI)1097-0290(19960705)51:1<126::AID-BIT15>3.0.CO;2-O.
K.B. Lee, M.B. Gu and S.-H. Moon, Water Res., 37, 983 (2003);doi: 10.1016/S0043-1354(02)00453-0.
J. Shim, G.-Y. Kim, K.-H. Yeon, S.-H. Cho, J.-J. Woo and S.-H. Moon, Korean J. Chem. Eng., 24, 72 (2007); doi:10.1007/s11814-007-5012-5.
F. Rojas-Melgarejo, J.N. Rodríguez-López, F. García-Cánovas and P.A. García-Ruiz, Process Biochem., 39, 1455 (2004); doi:10.1016/S0032-9592(03)00276-0.
C. Flock, A. Bassi and M. Gijzen, J. Chem. Technol. Biotechnol., 74, 303 (1999); doi:10.1002/(SICI)1097-4660(199904)74:4<303::AID-JCTB38>3.0.CO;2-B.
A. Bódalo, J. Bastida, M.F. Máximo, M.C. Montiel, M. Gómez and M.D. Murcia, Bioprocess Biosyst, 31, 587 (2008); doi:10.1007/s00449-008-0207-7.