Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Oxidative Degradation of Phenol by Corona Dielectric Barrier Discharge at Gas-Liquid Interphase
Corresponding Author(s) : Lei Wang
Asian Journal of Chemistry,
Vol. 26 No. 3 (2014): Vol 26 Issue 3
Abstract
In this study, corona gas-liquid dielectric barrier discharge reactor for phenol degradation was investigated. The discharge was formed between two needle metal electrodes and an aqueous solution surface where the counter electrode was submerged and separated by a quartz dielectric tube. Effects of solution conductivity, pH and gas composition on the degradation were examined. Experimental results showed that the degradation of phenol proceeded perfectly in a wide range of solution conductivity. In the process of degradation of phenol, ozone was additionally formed. The removal of phenol increased with the order: argon < air < oxygen. Increasing pH was favorable for phenol removal. When using argon as the discharge gas, the major degradation products were catechol, hydroquinone, hydroxyhydroquinone, acetic acid, formic acid and oxalic acid. In oxygen or air discharges, 1,4-benzoquinone and muconic acid were additionally formed. The energy efficiency of removal of phenol has been compared with other competitive processes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.R. Locke, M. Sato, P. Sunka, M.R. Hoffmann and J.S. Chang, Ind. Eng. Chem. Res., 45, 882 (2006); doi:10.1021/ie050981u.
- H.M. Jones and E.E. Kunhardt, J. Appl. Phys., 77, 795 (1995); doi:10.1063/1.359002.
- 3 S.K. Sengupta, J. Electrochem. Soc., 145, 2209 (1998); doi:10.1149/1.1838621.
- Y.J. Liu, B. Sun, L. Wang and D.G. Wang, Plasma Chem. Plasma Process., 32, 359 (2012); doi:10.1007/s11090-011-9347-7.
- M. Tezuka and M. Iwasaki, Thin Solid Films, 316, 123 (1998); doi:10.1016/S0040-6090(98)00401-5.
- J. Gao, Y. Liu, W. Yang, L. Pu, J. Yu and Q. Lu, Plasma Sources Sci. Technol., 12, 533 (2003); doi:10.1088/0963-0252/12/4/305.
- L. Wang and Y.J. Liu, Plasma Chem. Plasma Process., 32, 715 (2012); doi:10.1007/s11090-012-9375-y.
- W.F.L.M. Hoeben, E.M. Veldhuizen, W.R. Rutgers and G.M.W. Kroesen, J. Phys. D Appl. Phys., 32, L133 (1999); doi:10.1088/0022-3727/32/24/103.
- R. Burlica, W. Finney and B. Locke, IEEE Ind. Trans., 49, 1098 (2013); doi:10.1109/TIA.2013.2253080.
- M.M. Kuraica, B.M. Obradović, D. Manojlović, D.R. Ostojić and J. Purić, Vacuum, 73, 705 (2004); doi:10.1016/j.vacuum.2003.12.093.
- P. Baroch, N. Saito and O. Takai, J. Phys. D Appl. Phys., 41, 085207 (2008); doi:10.1088/0022-3727/41/8/085207.
- F. Wang, J. Li, Y. Wu, H. Wang and G. Li, High Voltage Eng., 33, 124 (2007).
- E. Mvula, M.N. Schuchmann and C. von Sonntag, J. Chem. Soc., Perkin Trans. 2, 3, 264 (2001); doi:10.1039/b008434o.
- U. Kogelschatz, Plasma Chem. Plasma Process., 23, 1 (2003); doi:10.1023/A:1022470901385.
- J. Hoigné and H. Bader, Water Res., 17, 173 (1983); doi:10.1016/0043-1354(83)90098-2.
- J. Hoigné and H. Bader, Water Res., 17, 185 (1983); doi:10.1016/0043-1354(83)90099-4.
- J. Staehelin and J. Hoigne, Environ. Sci. Technol., 16, 676 (1982); doi:10.1021/es00104a009.
- G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross and W. Tsang, J. Phys. Chem. Ref. Data, 17, 513 (1988); doi:10.1063/1.555805.
- W.H. Glaze, J.W. Kang and D.H. Chapin, Ozone Sci. Eng., 9, 335 (1987); doi:10.1080/01919518708552148.
- C. von Sonntag and H.P. Schuchmann, Angew. Chem. Int. Ed. Engl., 30, 1229 (1991); doi:10.1002/anie.199112291.
- E. Mvula and C. von Sonntag, Org. Biomol. Chem., 1, 1749 (2003); doi:10.1039/b301824p.
References
B.R. Locke, M. Sato, P. Sunka, M.R. Hoffmann and J.S. Chang, Ind. Eng. Chem. Res., 45, 882 (2006); doi:10.1021/ie050981u.
H.M. Jones and E.E. Kunhardt, J. Appl. Phys., 77, 795 (1995); doi:10.1063/1.359002.
3 S.K. Sengupta, J. Electrochem. Soc., 145, 2209 (1998); doi:10.1149/1.1838621.
Y.J. Liu, B. Sun, L. Wang and D.G. Wang, Plasma Chem. Plasma Process., 32, 359 (2012); doi:10.1007/s11090-011-9347-7.
M. Tezuka and M. Iwasaki, Thin Solid Films, 316, 123 (1998); doi:10.1016/S0040-6090(98)00401-5.
J. Gao, Y. Liu, W. Yang, L. Pu, J. Yu and Q. Lu, Plasma Sources Sci. Technol., 12, 533 (2003); doi:10.1088/0963-0252/12/4/305.
L. Wang and Y.J. Liu, Plasma Chem. Plasma Process., 32, 715 (2012); doi:10.1007/s11090-012-9375-y.
W.F.L.M. Hoeben, E.M. Veldhuizen, W.R. Rutgers and G.M.W. Kroesen, J. Phys. D Appl. Phys., 32, L133 (1999); doi:10.1088/0022-3727/32/24/103.
R. Burlica, W. Finney and B. Locke, IEEE Ind. Trans., 49, 1098 (2013); doi:10.1109/TIA.2013.2253080.
M.M. Kuraica, B.M. Obradović, D. Manojlović, D.R. Ostojić and J. Purić, Vacuum, 73, 705 (2004); doi:10.1016/j.vacuum.2003.12.093.
P. Baroch, N. Saito and O. Takai, J. Phys. D Appl. Phys., 41, 085207 (2008); doi:10.1088/0022-3727/41/8/085207.
F. Wang, J. Li, Y. Wu, H. Wang and G. Li, High Voltage Eng., 33, 124 (2007).
E. Mvula, M.N. Schuchmann and C. von Sonntag, J. Chem. Soc., Perkin Trans. 2, 3, 264 (2001); doi:10.1039/b008434o.
U. Kogelschatz, Plasma Chem. Plasma Process., 23, 1 (2003); doi:10.1023/A:1022470901385.
J. Hoigné and H. Bader, Water Res., 17, 173 (1983); doi:10.1016/0043-1354(83)90098-2.
J. Hoigné and H. Bader, Water Res., 17, 185 (1983); doi:10.1016/0043-1354(83)90099-4.
J. Staehelin and J. Hoigne, Environ. Sci. Technol., 16, 676 (1982); doi:10.1021/es00104a009.
G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross and W. Tsang, J. Phys. Chem. Ref. Data, 17, 513 (1988); doi:10.1063/1.555805.
W.H. Glaze, J.W. Kang and D.H. Chapin, Ozone Sci. Eng., 9, 335 (1987); doi:10.1080/01919518708552148.
C. von Sonntag and H.P. Schuchmann, Angew. Chem. Int. Ed. Engl., 30, 1229 (1991); doi:10.1002/anie.199112291.
E. Mvula and C. von Sonntag, Org. Biomol. Chem., 1, 1749 (2003); doi:10.1039/b301824p.