Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Enhanced Production of Rhamnolipids by Pseudomonas aeruginosa JQ927360 Using Response Surface Methodology
Corresponding Author(s) : A. Jamal
Asian Journal of Chemistry,
Vol. 26 No. 4 (2014): Vol 26 Issue 4
Abstract
Rhamnolipids are fascinating microbial surfactants having great industrial importance. Present study was focused to investigate the role of some critical fermentation parameters for the production of rhamnolipids from P. aeruginosa JQ927360. The process for the production of rhamnolipids was optimized using central composite design and response surface methodology. The factors subjected for studies were pH, temperature, shaking speed and inoculum size. The maximum rhamnolipids yield of 4.44 g/L was achieved at optimum level of process variable i.e., pH 7, 33 °C, 155 rpm and 2.8 % inoculum size. The results of the present investigation suggested that application of mathematical modeling remained very effective to determine optimum reaction conditions and improved the yield of given bioprocess.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I.M. Banat, A. Franzetti, I. Gandolfi, G. Bestetti, M.G. Martinotti, L. Fracchia, T.J. Smyth and R. Marchant, Appl. Microbiol. Biotechnol., 87, 427 (2010); doi:10.1007/s00253-010-2589-0.
- L. Rodrigues, I.M. Banat, J. Teixeira and R. Oliveira, J. Antimicrob. Chemother., 57, 609 (2006); doi:10.1093/jac/dkl024.
- J.R. Edwards and J.A. Hayashi, Arch. Biochem. Biophys., 111, 415 (1965); doi:10.1016/0003-9861(65)90204-3.
- A.M. Abdel-Mawgoud, F. Lépine and E. Déziel, Appl. Microbiol. Biotechnol., 86, 1323 (2010);doi: 10.1007/s00253-010-2498-2.
- J.Y. Wu, K.L. Yeh, W.B. Lu, C.L. Lin and J.S. Chang, Bioresour. Technol., 99, 1157 (2008); doi:10.1016/j.biortech.2007.02.026.
- P. Vatsa, L. Sanchez, C. Clement, F. Baillieul and S. Dorey, Int. J. Mol. Sci., 11, 5095 (2010); doi:10.3390/ijms11125095.
- M. Heyd, A. Kohnert, T.H. Tan, M. Nusser, F. Kirschhofer, G. Brenner-Weiss, M. Franzreb and S. Berensmeier, Anal. Bioanal. Chem., 391, 1579 (2008); doi:10.1007/s00216-007-1828-4.
- M.M. Müller, C. Syldatk and R. Hausmann, Appl. Microbiol. Biotechnol., 87, 167 (2010); doi:10.1007/s00253-010-2513-7.
- J.R. Sousa, J.A.C. Correa, J.J.L. Martins, V.M.M. Melo, A.J.G. Cruz and L.R.B. Gonçalves, J. Biotechnol., 150, 395 (2010); doi:10.1016/j.jbiotec.2010.09.510.
- M.H. Choi, J. Xu, M. Gutierrez, T. Yoo, Y.H. Cho and S.C. Yoon, J. Biotechnol., 151, 30 (2011); doi:10.1016/j.jbiotec.2010.10.072.
- A.R. Najafi, M.R. Rahimpour, A.H. Jahanmiri, R. Roostaazad, D. Arabian and Z. Ghobadi, Chem. Eng. J., 163, 188 (2010); doi:10.1016/j.cej.2010.06.044.
- W.A.K. Lotfy, M. Ghanem and E.R. El-Helow, Bioresour. Technol., 98, 3470 (2007); doi:10.1016/j.biortech.2006.11.032.
- J. Chen, P.T. Huang, K.Y. Zhang and F.R. Ding, J. Appl. Microbiol., 112, 660 (2012); doi:10.1111/j.1365-2672.2012.05242.x.
- E.V Chandrasekaran. and J.N.BeMiller, In; Whistler, R.L. and J.N. Bemiller (Eds.) Methods in carbohydrate chemistry, New York: Academic Press. (1980).
- D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New York, pp. 427-510 (1997).
- C. Chayabutra, J. Wu and L. Ju, Biotechnol. Bioeng., 72, 25 (2001); doi:10.1002/1097-0290(20010105)72:1<25::AID-BIT4>3.0.CO;2-J.
- J.C. Mata-Sandoval, J. Karns and A. Torrents, Microbiol. Res., 155, 249 (2001); doi:10.1016/S0944-5013(01)80001-X.
- R.R. Saikia, S. Deka, M. Deka and H. Sarma, J. Basic Microbiol., 52, 446 (2012); doi:10.1002/jobm.201100228.
- L.H. Guerra-Santos, O. Kappeli and A. Fiechter, Appl. Microbiol. Biotechnol., 24, 443 (1986); doi:10.1007/BF00250320.
- M.M. Müller, B. Hörmann, M. Kugel, C. Syldatk and R. Hausmann, Appl. Microbiol. Biotechnol., 89, 585 (2011); doi:10.1007/s00253-010-2901-z.
- F. Dubois-Brissonnet, C. Malgrange, L. Guérin-Méchin, B. Heyd and J.Y. Leveau, Int. J. Food Microbiol., 55, 79 (2000); doi:10.1016/S0168-1605(00)00198-7.
- Y.H. Wei, C.L. Chou and J.S. Chang, Biochem. Eng. J., 27, 146 (2005); doi:10.1016/j.bej.2005.08.028.
- C.G. Kumar, S.K. Mamidyala, P. Sujitha, H. Muluka and S. Akkenapally, Biotechnol. Prog., 6, 1507 (2012); doi:10.1002/btpr.1634.
- D.G. Davies, A.M. Chakrabarty and G.G. Geesey, Appl. Environ. Microbiol., 59, 1181 (1993).
- D.G. Davies and G.G. Geesey, Appl. Environ. Microbiol., 61, 860 (1995).
- E. Deziel, S. Gopalan, A.P. Tampakaki, F. Lepine, K.E. Padfield, M. Saucier, G. Xiao and L.G. Rahme, Mol. Microbiol., 55, 998 (2005); doi:10.1111/j.1365-2958.2004.04448.x.
- J.W. Schertzer, M.L. Boulette and M. Whiteley, Trends Microbiol., 17, 189 (2009); doi:10.1016/j.tim.2009.02.001.
References
I.M. Banat, A. Franzetti, I. Gandolfi, G. Bestetti, M.G. Martinotti, L. Fracchia, T.J. Smyth and R. Marchant, Appl. Microbiol. Biotechnol., 87, 427 (2010); doi:10.1007/s00253-010-2589-0.
L. Rodrigues, I.M. Banat, J. Teixeira and R. Oliveira, J. Antimicrob. Chemother., 57, 609 (2006); doi:10.1093/jac/dkl024.
J.R. Edwards and J.A. Hayashi, Arch. Biochem. Biophys., 111, 415 (1965); doi:10.1016/0003-9861(65)90204-3.
A.M. Abdel-Mawgoud, F. Lépine and E. Déziel, Appl. Microbiol. Biotechnol., 86, 1323 (2010);doi: 10.1007/s00253-010-2498-2.
J.Y. Wu, K.L. Yeh, W.B. Lu, C.L. Lin and J.S. Chang, Bioresour. Technol., 99, 1157 (2008); doi:10.1016/j.biortech.2007.02.026.
P. Vatsa, L. Sanchez, C. Clement, F. Baillieul and S. Dorey, Int. J. Mol. Sci., 11, 5095 (2010); doi:10.3390/ijms11125095.
M. Heyd, A. Kohnert, T.H. Tan, M. Nusser, F. Kirschhofer, G. Brenner-Weiss, M. Franzreb and S. Berensmeier, Anal. Bioanal. Chem., 391, 1579 (2008); doi:10.1007/s00216-007-1828-4.
M.M. Müller, C. Syldatk and R. Hausmann, Appl. Microbiol. Biotechnol., 87, 167 (2010); doi:10.1007/s00253-010-2513-7.
J.R. Sousa, J.A.C. Correa, J.J.L. Martins, V.M.M. Melo, A.J.G. Cruz and L.R.B. Gonçalves, J. Biotechnol., 150, 395 (2010); doi:10.1016/j.jbiotec.2010.09.510.
M.H. Choi, J. Xu, M. Gutierrez, T. Yoo, Y.H. Cho and S.C. Yoon, J. Biotechnol., 151, 30 (2011); doi:10.1016/j.jbiotec.2010.10.072.
A.R. Najafi, M.R. Rahimpour, A.H. Jahanmiri, R. Roostaazad, D. Arabian and Z. Ghobadi, Chem. Eng. J., 163, 188 (2010); doi:10.1016/j.cej.2010.06.044.
W.A.K. Lotfy, M. Ghanem and E.R. El-Helow, Bioresour. Technol., 98, 3470 (2007); doi:10.1016/j.biortech.2006.11.032.
J. Chen, P.T. Huang, K.Y. Zhang and F.R. Ding, J. Appl. Microbiol., 112, 660 (2012); doi:10.1111/j.1365-2672.2012.05242.x.
E.V Chandrasekaran. and J.N.BeMiller, In; Whistler, R.L. and J.N. Bemiller (Eds.) Methods in carbohydrate chemistry, New York: Academic Press. (1980).
D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New York, pp. 427-510 (1997).
C. Chayabutra, J. Wu and L. Ju, Biotechnol. Bioeng., 72, 25 (2001); doi:10.1002/1097-0290(20010105)72:1<25::AID-BIT4>3.0.CO;2-J.
J.C. Mata-Sandoval, J. Karns and A. Torrents, Microbiol. Res., 155, 249 (2001); doi:10.1016/S0944-5013(01)80001-X.
R.R. Saikia, S. Deka, M. Deka and H. Sarma, J. Basic Microbiol., 52, 446 (2012); doi:10.1002/jobm.201100228.
L.H. Guerra-Santos, O. Kappeli and A. Fiechter, Appl. Microbiol. Biotechnol., 24, 443 (1986); doi:10.1007/BF00250320.
M.M. Müller, B. Hörmann, M. Kugel, C. Syldatk and R. Hausmann, Appl. Microbiol. Biotechnol., 89, 585 (2011); doi:10.1007/s00253-010-2901-z.
F. Dubois-Brissonnet, C. Malgrange, L. Guérin-Méchin, B. Heyd and J.Y. Leveau, Int. J. Food Microbiol., 55, 79 (2000); doi:10.1016/S0168-1605(00)00198-7.
Y.H. Wei, C.L. Chou and J.S. Chang, Biochem. Eng. J., 27, 146 (2005); doi:10.1016/j.bej.2005.08.028.
C.G. Kumar, S.K. Mamidyala, P. Sujitha, H. Muluka and S. Akkenapally, Biotechnol. Prog., 6, 1507 (2012); doi:10.1002/btpr.1634.
D.G. Davies, A.M. Chakrabarty and G.G. Geesey, Appl. Environ. Microbiol., 59, 1181 (1993).
D.G. Davies and G.G. Geesey, Appl. Environ. Microbiol., 61, 860 (1995).
E. Deziel, S. Gopalan, A.P. Tampakaki, F. Lepine, K.E. Padfield, M. Saucier, G. Xiao and L.G. Rahme, Mol. Microbiol., 55, 998 (2005); doi:10.1111/j.1365-2958.2004.04448.x.
J.W. Schertzer, M.L. Boulette and M. Whiteley, Trends Microbiol., 17, 189 (2009); doi:10.1016/j.tim.2009.02.001.