Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Thermal Analysis of Long-Term Storage Lignite in Oxygen-Enriched Air
Corresponding Author(s) : Yongfeng Zhang
Asian Journal of Chemistry,
Vol. 26 No. 4 (2014): Vol 26 Issue 4
Abstract
The combustion behavior of fresh lignite and long-term storage lignite from the same region were assessed in O2/N2 background gases by using thermogravimetric analyzer. The oxygen mole fraction is in the range of 21-80 %. The results show that the combustion ability of long-term storage lignite is weaker than the fresh one. The storage lignite almost unable to ignite when the oxygen content per cent is 21 % and can't burn out before 30 % O2 atmosphere. While the fresh sample can burn out completely in each atmosphere. Oxygen-enriched atmosphere improve the combustion and ignition capacity of the long-term storage lignite, especially the partial pressure of O2 above 40 %.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.J. Ashman and P.J. Mullinger, Fuel, 84, 1195 (2005); doi:10.1016/j.fuel.2004.07.014.
- Y.B. Tang, Z.H. Li, Y.L. Yang, N. Song and D.J. Ma, Asian. J. Chem., 25, 441 (2013).
- J.J. Pis, G. de la Puente, E. Fuente, A. Morán and F. Rubiera, Thermochim. Acta, 279, 93 (1996); doi:10.1016/S0040-6031(96)90066-0.
- K. Baris, S. Kizgut and V. Didari, Fuel, 93, 423 (2012); doi:10.1016/j.fuel.2011.08.066.
- H.H. Wang, B.Z. Dlugogorski and E.M. Kennedy, Prog. Energy Combust., 29, 487 (2003); doi:10.1016/S0360-1285(03)00042-X.
- R.E. Jones and D.T.A. Townend, Nature, 155, 424 (1945); doi:10.1038/155424b0.
- R.E. Jones and D.T.A. Townend, J. Soc. Chem. Ind., 68, 197 (1949); doi:10.1002/jctb.5000680701.
- F.E. Huggins and G.P. Huffman, in ed.: C.R. Nelson, Chemistry of Coal Weathering, vol. 14, Ch. 3, Amsterdam, p. 33 (1989).
- Q.B. Wang, X.L. Zhang, D.P. Xu and Q.R. Chen, J. China Univ. Mining Technol., 17, 495 (2007).
- G.H. Wang and A.N. Zhou, Int. J. Mining Techno.l, 22, 517 (2012); doi:10.1016/j.ijmst.2012.01.013.
- Y.S. Nugroho, A.C. McIntosh and B.M. Gibbs, Fuel, 79, 1951 (2000); doi:10.1016/S0016-2361(00)00053-3.
- H. Wang, B.Z. Dlugogorski and E.M. Kennedy, Combust. Flame, 134, 107 (2003); doi:10.1016/S0010-2180(03)00086-5.
- A. Küçük, Y. Kadıoğlu and M.Ş. Gülaboğlu, Combust. Flame, 133, 255 (2003); doi:10.1016/S0010-2180(02)00553-9.
- J. Krzywanski, T. Czakiert, W. Muskala, R. Sekret and W. Nowak, Fuel Process. Technol., 91, 290 (2010); doi:10.1016/j.fuproc.2009.10.011.
- J. Krzywanski, T. Czakiert, W. Muskala, R. Sekret and W. Nowak, Fuel Process. Technol., 91, 364 (2010); doi:10.1016/j.fuproc.2009.11.008.
- Z.S. Yu, X.Q. Ma and Y.F. Liao, Renew. Energy, 35, 895 (2010); doi:10.1016/j.renene.2009.10.006.
- L.Q. Yin, Coal Sci. Technol., 32, 12 (2004).
- Q.L. He, K.B. Ren and D.M. Wang, Coal Eng., 11, 45 (2003).
- Z. Xu and D.Y. Cao, Coal Geology Chin., 20, 5 (2008).
- D.L. Carpenter and G.D. Sergeant, Fuel, 45, 429 (1966).
- O.P. Mahajan and J.P. Walker Jr., Fuel, 50, 308 (1971); doi:10.1016/0016-2361(71)90019-6.
- H. Gan, S.P. Nandi and J.P. Walker Jr., Fuel, 51, 272 (1972); doi:10.1016/0016-2361(72)90003-8.
- R. Kaji, Y. Hishinuma and Y. Nakamura, Fuel, 64, 297 (1985); doi:10.1016/0016-2361(85)90413-2.
References
P.J. Ashman and P.J. Mullinger, Fuel, 84, 1195 (2005); doi:10.1016/j.fuel.2004.07.014.
Y.B. Tang, Z.H. Li, Y.L. Yang, N. Song and D.J. Ma, Asian. J. Chem., 25, 441 (2013).
J.J. Pis, G. de la Puente, E. Fuente, A. Morán and F. Rubiera, Thermochim. Acta, 279, 93 (1996); doi:10.1016/S0040-6031(96)90066-0.
K. Baris, S. Kizgut and V. Didari, Fuel, 93, 423 (2012); doi:10.1016/j.fuel.2011.08.066.
H.H. Wang, B.Z. Dlugogorski and E.M. Kennedy, Prog. Energy Combust., 29, 487 (2003); doi:10.1016/S0360-1285(03)00042-X.
R.E. Jones and D.T.A. Townend, Nature, 155, 424 (1945); doi:10.1038/155424b0.
R.E. Jones and D.T.A. Townend, J. Soc. Chem. Ind., 68, 197 (1949); doi:10.1002/jctb.5000680701.
F.E. Huggins and G.P. Huffman, in ed.: C.R. Nelson, Chemistry of Coal Weathering, vol. 14, Ch. 3, Amsterdam, p. 33 (1989).
Q.B. Wang, X.L. Zhang, D.P. Xu and Q.R. Chen, J. China Univ. Mining Technol., 17, 495 (2007).
G.H. Wang and A.N. Zhou, Int. J. Mining Techno.l, 22, 517 (2012); doi:10.1016/j.ijmst.2012.01.013.
Y.S. Nugroho, A.C. McIntosh and B.M. Gibbs, Fuel, 79, 1951 (2000); doi:10.1016/S0016-2361(00)00053-3.
H. Wang, B.Z. Dlugogorski and E.M. Kennedy, Combust. Flame, 134, 107 (2003); doi:10.1016/S0010-2180(03)00086-5.
A. Küçük, Y. Kadıoğlu and M.Ş. Gülaboğlu, Combust. Flame, 133, 255 (2003); doi:10.1016/S0010-2180(02)00553-9.
J. Krzywanski, T. Czakiert, W. Muskala, R. Sekret and W. Nowak, Fuel Process. Technol., 91, 290 (2010); doi:10.1016/j.fuproc.2009.10.011.
J. Krzywanski, T. Czakiert, W. Muskala, R. Sekret and W. Nowak, Fuel Process. Technol., 91, 364 (2010); doi:10.1016/j.fuproc.2009.11.008.
Z.S. Yu, X.Q. Ma and Y.F. Liao, Renew. Energy, 35, 895 (2010); doi:10.1016/j.renene.2009.10.006.
L.Q. Yin, Coal Sci. Technol., 32, 12 (2004).
Q.L. He, K.B. Ren and D.M. Wang, Coal Eng., 11, 45 (2003).
Z. Xu and D.Y. Cao, Coal Geology Chin., 20, 5 (2008).
D.L. Carpenter and G.D. Sergeant, Fuel, 45, 429 (1966).
O.P. Mahajan and J.P. Walker Jr., Fuel, 50, 308 (1971); doi:10.1016/0016-2361(71)90019-6.
H. Gan, S.P. Nandi and J.P. Walker Jr., Fuel, 51, 272 (1972); doi:10.1016/0016-2361(72)90003-8.
R. Kaji, Y. Hishinuma and Y. Nakamura, Fuel, 64, 297 (1985); doi:10.1016/0016-2361(85)90413-2.