Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Removal and Recovery of Mo(IV) from Aqueous Solutions by D201 Resin: Adsorption and Column Studies
Asian Journal of Chemistry,
Vol. 26 No. 2 (2014): Vol 26 Issue 2
Abstract
The adsorption and desorption properties of D201 resin for Mo(IV) have been investigated in CH3COOH-CH3COOAc medium. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e., initial pH, contact time and temperature. The optimal pH for the adsorption was 5.5 and the maximum adsorption capacity was 501.4 mg/g at 298 K. The apparent adsorption rate constant were k288 K = 2.69 × 10-5 s-1; k298 K = 2.85 × 10-5 s-1; k308 K = 4.37 × 10-5 s-1; k313 K = 4.61 × 10-5 s-1, respectively. The adsorption isotherms data fitted well to Langmuir model. Finally, Mo(IV) could be eluted by using 1.25 mol/L NaOH solution and the resin can be regenerated and reused without apparent decrease of adsorption capacity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.K. Misra, S.K. Jain and P.K. Khatri, . R.K. Misra, S.K. Jain and P.K. Khatri, J. Hazard. Mater., 185, 1508 (2011); doi:10.1016/j.jhazmat.2010.10.077.
- C.H. Xiong and C.P. Yao, J. Hazard. Mater., 166, 815 (2009); doi:10.1016/j.jhazmat.2008.11.082.
- C. Namasivayam and M.V. Sureshkumar, Clean Soil Air Water, 37, 60 (2009); doi: 10.1002/clen.200800130.
- E.A. Elhadi, N. Matsue and T. Henmi, Clay Sci., 11, 405 (2001).
- J.P. Gustafsson, Chem. Geol., 200, 105 (2003); doi:10.1016/S0009-2541(03)00161-X.
- B.C. Bostick, S. Fendorf and G.R. Helz, Environ. Sci. Technol., 37, 285 (2003); doi:10.1021/es0257467.
- E. Guibal, C. Milot and J.M. Tobin, Ind. Eng. Chem. Res., 37, 1454 (1998); doi:10.1021/ie9703954.
- I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); doi:10.1021/ja02242a004.
- H.M.F. Freundlich, Z. Phys. Chem., 57, 385 (1906).
- C.H. Xiong, X.Y. Chen and X.Z. Liu, Chem. Eng. J., 203, 115 (2012); doi:10.1016/j.cej.2012.06.131.
- G.D. Brykina, T.V. Marchak and L.S. Krysina, Zh. Anal. Khim., 35, 2294 (1980).
- G.E. Boyd, A.W. Adamson and L.S. Myers Jr., J. Am. Chem. Soc., 69, 2836 (1947); doi:10.1021/ja01203a066.
- C.H. Xiong, Q. Jia, X.Y. Chen, G.T. Wang and C.P. Yao, Ind. Eng. Chem. Res., 52, 4978 (2013); doi: 10.1021/ie3033312.
- C.H. Xiong, L.L. Pei, X.Y. Chen, L.Q. Yang, C.A. Ma and X.M. Zheng, Carbohyd. Polym., 98, 1222 (2013); doi: 10.1016/j.carbpol.2013.07.034.
- C.H. Xiong, X.Y. Chen and C.P. Yao, Curr. Org. Chem., 16, 1942 (2012); doi: 10.2174/138527212802651296.
References
R.K. Misra, S.K. Jain and P.K. Khatri, . R.K. Misra, S.K. Jain and P.K. Khatri, J. Hazard. Mater., 185, 1508 (2011); doi:10.1016/j.jhazmat.2010.10.077.
C.H. Xiong and C.P. Yao, J. Hazard. Mater., 166, 815 (2009); doi:10.1016/j.jhazmat.2008.11.082.
C. Namasivayam and M.V. Sureshkumar, Clean Soil Air Water, 37, 60 (2009); doi: 10.1002/clen.200800130.
E.A. Elhadi, N. Matsue and T. Henmi, Clay Sci., 11, 405 (2001).
J.P. Gustafsson, Chem. Geol., 200, 105 (2003); doi:10.1016/S0009-2541(03)00161-X.
B.C. Bostick, S. Fendorf and G.R. Helz, Environ. Sci. Technol., 37, 285 (2003); doi:10.1021/es0257467.
E. Guibal, C. Milot and J.M. Tobin, Ind. Eng. Chem. Res., 37, 1454 (1998); doi:10.1021/ie9703954.
I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); doi:10.1021/ja02242a004.
H.M.F. Freundlich, Z. Phys. Chem., 57, 385 (1906).
C.H. Xiong, X.Y. Chen and X.Z. Liu, Chem. Eng. J., 203, 115 (2012); doi:10.1016/j.cej.2012.06.131.
G.D. Brykina, T.V. Marchak and L.S. Krysina, Zh. Anal. Khim., 35, 2294 (1980).
G.E. Boyd, A.W. Adamson and L.S. Myers Jr., J. Am. Chem. Soc., 69, 2836 (1947); doi:10.1021/ja01203a066.
C.H. Xiong, Q. Jia, X.Y. Chen, G.T. Wang and C.P. Yao, Ind. Eng. Chem. Res., 52, 4978 (2013); doi: 10.1021/ie3033312.
C.H. Xiong, L.L. Pei, X.Y. Chen, L.Q. Yang, C.A. Ma and X.M. Zheng, Carbohyd. Polym., 98, 1222 (2013); doi: 10.1016/j.carbpol.2013.07.034.
C.H. Xiong, X.Y. Chen and C.P. Yao, Curr. Org. Chem., 16, 1942 (2012); doi: 10.2174/138527212802651296.