Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Ti4+-Doped LiFePO4 Composite Cathode Materials
Asian Journal of Chemistry,
Vol. 26 No. 2 (2014): Vol 26 Issue 2
Abstract
LiFe0.98Ti0.02PO4/C composite cathode material was synthesized from nanocrystalline Fe2O3 through mechanical activation process, followed by carbothermal reduction reaction in the presence of Li2CO3 and NH4H2PO4. The composition, crystalline structure and morphology of the prepared powders were investigated with XRD and SEM. Electrochemical tests indicated that the Ti-doping of carbon-coated LiFePO4 did not affect the olivine structure of the lithium iron phosphate but obviously improve its discharge capacity and rate capability, which would be ascribed to the increased and larger lattice parameters and electronic conductivity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.K. Padhi, K.S. Nanjundaswamy and J.B. Goodenough, J. Electrochem. Soc, 144, 1188 (1997); doi:10.1149/1.1837571.
- H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu and H.Q. Wu, J. Electrochem. Commun., 8, 1553 (2006); doi:10.1016/j.elecom.2006.07.014.
- R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik and J. Jamnik, J. Electrochem. Soc, 152, A607 (2005); doi:10.1149/1.1860492.
- G.X. Wang, S. Bewlay, S.A. Needham, H.K. Liu, R.S. Liu, V.A. Drozd, J.-F. Lee and J.M. Chen, J. Electrochem. Soc, 153, A25 (2006); doi:10.1149/1.2128766.
- M.S. Islam, D.J. Driscoll, C.A.J. Fisher and P.R. Slater, Chem. Mater., 17, 5085 (2005); doi:10.1021/cm050999v.
- J.M. Tarascon and M. Armand, Nature, 414, 359 (2001); doi:10.1038/35104644.
- H.S. Kim, B.W. Cho and W.I. Cho, Power. Sources, 132, 235 (2004); doi:10.1016/j.jpowsour.2003.12.058.
- D.Y.W. Yu, C. Fietzek, W. Weydanz, K. Donoue, T. Inoue, H. Kurokawa and S. Fujitani, J. Electrochem. Soc., 154, A253 (2007); doi:10.1149/1.2434687.
References
A.K. Padhi, K.S. Nanjundaswamy and J.B. Goodenough, J. Electrochem. Soc, 144, 1188 (1997); doi:10.1149/1.1837571.
H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu and H.Q. Wu, J. Electrochem. Commun., 8, 1553 (2006); doi:10.1016/j.elecom.2006.07.014.
R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik and J. Jamnik, J. Electrochem. Soc, 152, A607 (2005); doi:10.1149/1.1860492.
G.X. Wang, S. Bewlay, S.A. Needham, H.K. Liu, R.S. Liu, V.A. Drozd, J.-F. Lee and J.M. Chen, J. Electrochem. Soc, 153, A25 (2006); doi:10.1149/1.2128766.
M.S. Islam, D.J. Driscoll, C.A.J. Fisher and P.R. Slater, Chem. Mater., 17, 5085 (2005); doi:10.1021/cm050999v.
J.M. Tarascon and M. Armand, Nature, 414, 359 (2001); doi:10.1038/35104644.
H.S. Kim, B.W. Cho and W.I. Cho, Power. Sources, 132, 235 (2004); doi:10.1016/j.jpowsour.2003.12.058.
D.Y.W. Yu, C. Fietzek, W. Weydanz, K. Donoue, T. Inoue, H. Kurokawa and S. Fujitani, J. Electrochem. Soc., 154, A253 (2007); doi:10.1149/1.2434687.