Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Reaction Kinetics of Fly Ash in Al2O3-NaOH Solution Systems
Asian Journal of Chemistry,
Vol. 26 No. 2 (2014): Vol 26 Issue 2
Abstract
Reaction kinetics of fly ash in Al2O3-NaOH solution system were analyzed by a modified “Jander” equation. After kinetics analysis, only two reaction stages could be found during the reaction process. Stage 1, the reaction process was limited by diffusion through a porous layer. Stage 2, the reaction process was controlled by diffusion through a dense layer. The rate constants of stage 2 were in the order of 7.5 M NaOH (0.00609), Al2O3/Na2O = 0 > 7.5 M NaOH, Al2O3/ Na2O = 0.0066 > (0.00404) > 7.5 M NaOH, Al2O3/Na2O = 0.013 (0.00301) > 7.5 M NaOH, Al2O3/Na2O = 0.033 (0.00128).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.B. Woodbury, G. Rubin, D.C. McCune, L.H. Weinstein and E. Neuhauser, Water, Air Soil, 111, 271 (1999); doi:10.1023/A:1005008411336.
- R.L. Davison, D.F.S. Natusch, J.R. Wallace and C.A. Evans, Environ. Sci. Technol., 8, 1107 (1974); doi:10.1021/es60098a003.
- T.L. Theis, J.D. Westrick, C.L. Hsu and J.J. Marley, J. Water Pollut. Control Fed., 50, 2457 (1978).
- P. Chindaprasirt, C. Jaturapitakkul, W. Chalee and U. Rattanasak, Waste Manage., 29, 539 (2009); doi:10.1016/j.wasman.2008.06.023.
- U. Rattanasak and P. Chindaprasirt, Miner. Eng., 22, 1073 (2009); doi:10.1016/j.mineng.2009.03.022.
- R. Slavik, V. Bednarik, M. Vondruska and A. Nemec, J. Mater. Process. Technol., 200, 265 (2008); doi:10.1016/j.jmatprotec.2007.09.008.
- A. Allahverdi and F. Škvára, Ceramic-Silikaty, 49, 225 (2005).
- J.L. Provis and J.S.J. Van Deventer, Chem. Eng. Sci., 62, 2318 (2007); doi:10.1016/j.ces.2007.01.028.
- 13. A. Fernandez-Jimenez, A.G. De la Torre, A. Palomo, G. Lopez-Olmo, M.M. Alonso and M.A.G. Aranda, Fuel, 85, 1960 (2006); doi:10.1016/j.fuel.2006.04.006.
- 14. W. Jander, Z. Anorg. Allg. Chem., 163, 1 (1927); doi:10.1002/zaac.19271630102.
- 15. R. Kondo, K. Lee and M. Diamond, J. Ceram. Soc. Jpn., 84, 573 (1976).
References
P.B. Woodbury, G. Rubin, D.C. McCune, L.H. Weinstein and E. Neuhauser, Water, Air Soil, 111, 271 (1999); doi:10.1023/A:1005008411336.
R.L. Davison, D.F.S. Natusch, J.R. Wallace and C.A. Evans, Environ. Sci. Technol., 8, 1107 (1974); doi:10.1021/es60098a003.
T.L. Theis, J.D. Westrick, C.L. Hsu and J.J. Marley, J. Water Pollut. Control Fed., 50, 2457 (1978).
P. Chindaprasirt, C. Jaturapitakkul, W. Chalee and U. Rattanasak, Waste Manage., 29, 539 (2009); doi:10.1016/j.wasman.2008.06.023.
U. Rattanasak and P. Chindaprasirt, Miner. Eng., 22, 1073 (2009); doi:10.1016/j.mineng.2009.03.022.
R. Slavik, V. Bednarik, M. Vondruska and A. Nemec, J. Mater. Process. Technol., 200, 265 (2008); doi:10.1016/j.jmatprotec.2007.09.008.
A. Allahverdi and F. Škvára, Ceramic-Silikaty, 49, 225 (2005).
J.L. Provis and J.S.J. Van Deventer, Chem. Eng. Sci., 62, 2318 (2007); doi:10.1016/j.ces.2007.01.028.
13. A. Fernandez-Jimenez, A.G. De la Torre, A. Palomo, G. Lopez-Olmo, M.M. Alonso and M.A.G. Aranda, Fuel, 85, 1960 (2006); doi:10.1016/j.fuel.2006.04.006.
14. W. Jander, Z. Anorg. Allg. Chem., 163, 1 (1927); doi:10.1002/zaac.19271630102.
15. R. Kondo, K. Lee and M. Diamond, J. Ceram. Soc. Jpn., 84, 573 (1976).