Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Anharmonic Effect Study of Formaldehyde Unimolecular Reaction
Asian Journal of Chemistry,
Vol. 26 No. 2 (2014): Vol 26 Issue 2
Abstract
The rate constants of the unimolecular dissociation and isomerization reactions of the formaldehyde were calculated based on the harmonic and anharmonic oscillator models. The anharmonic effect was examined. ab initio Calculations were carried out at MP2/aug-cc-pVTZ level. The results show that the rate constant for the H elimination is the largest, i.e. the H-elimination is predominant channel for unimolecular reaction of HCHO. In addition, in the canonical system, the anharmonic effect is not obvious while, the one is visible in the microcanonical case. It is indicated that the anharmonic Rice-Ramsperger-Kassel-Marcus theory can provide a reasonably good description for formaldehyde unimolecular reaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Yamada, T. Nakagawa, K. Kuchitsu and Y.B.J. Morino, Mol. Spectrosc., 38, 70 (1971); doi:10.1016/0022-2852(71)90094-4.
- J.L. Duncan and P.D. Mallinson, Chem. Phys. Lett., 23, 597 (1973); doi:10.1016/0009-2614(73)89037-2.
- W.H. Miller, J. Am. Chem. Soc., 101, 6810 (1979); doi:10.1021/ja00517a004.
- J.D. Goddard and H.F. Schaefer III, J. Chem. Phys., 70, 5117 (1979); doi:10.1063/1.437353.
- M. Dupuis, W.A. Lester Jr., B.H. Lengsfield III and B. Lui, J. Chem. Phys., 79, 6167 (1983); doi:10.1063/1.445799.
- J. Troe, J. Phys. Chem., 88, 4375 (1984); doi:10.1021/j150663a038.
- W.F. Polik, D.R. Guyer and C.B. Moore, J. Chem. Phys., 92, 3453 (1990); doi:10.1063/1.457857.
- B.S.J. Jursic, Mol. Struct. (Theochem), 418, 11 (1997); doi:10.1016/S0166-1280(97)00018-3.
- J.-S.-K. Yu and C.H. Yu, Chem. Phys. Lett., 271, 259 (1997); doi:10.1016/S0009-2614(97)00456-9.
- L.M.M de A. Martins, G. Arbilla and E.C. da Silva, Phys. Chem. A., 102, 10805 (1998); doi:10.1021/jp982962m.
- G.F. Bauerfeldt, L.M.M. de Albuquerque, G. Arbilla and E.C. da Silva, J. Mol. Struct. (Theochem), 580, 147 (2002); doi:10.1016/S0166-1280(01)00609-1.
- T. Yonehara and S. Kato, J. Chem. Phys., 117, 11131 (2002); doi:10.1063/1.1523058.
- X.B. Zhang, S.L. Zou, L.B. Harding and J.M. Bowman, J. Phys. Chem. A, 108, 8980 (2004); doi:10.1021/jp048339l.
- D. Townsend, Science, 306, 1158 (2004); doi:10.1126/science.1104386.
- (a) S.A. Lahankar, S.D. Chambreau, D. Townsend, F. Suits, J. Farnum, X. Zhang, J.M. Bowman and A.G. Suits, J. Chem. Phys., 125, 044303 (2006); doi:10.1063/1.2202241.; (b) S.A. Lahankar, S.D. Chambreau, X. Zhang, J.M. Bowman and A.G. Suits, J. Chem. Phys., 126, 044314 (2007); doi:10.1063/1.2429660.
- A.G. Suits, Acc. Chem. Res., 41, 873 (2008); doi:10.1021/ar8000734.
- P.L. Houston and C.B. Moore, J. Chem. Phys., 65, 757 (1976); doi:10.1063/1.433092.
- R. Krems and S. Nordholm, Z. Phys. Chem., 214, 1467 (2000); doi:10.1524/zpch.2000.214.11.1467.
- D.L. Shen and H.O. Pritchard, J. Chem. Soc., Faraday Trans., 92, 1297 (1996); doi:10.1039/ft9969201297.
- P. Hobza and Z. Havlas, Chem. Rev., 100, 4253 (2000); doi:10.1021/cr990050q.
- J.C. Tou and S.H. Lin, J. Chem. Phys., 49, 4187 (1968); doi:10.1063/1.1670734.
- S.H. Lin and H. Eyring, J. Chem. Phys., 39, 1577 (1963); doi:10.1063/1.1734483.
- S.H. Lin and H. Eyring, J. Chem. Phys., 43, 2153 (1964); doi:10.1063/1.1697098.
- G.H. Peslherbe and W.L. Hase, J. Chem. Phys., 105, 7432 (1996); doi:10.1063/1.472571.
- M.R. Hoare and Th.W. Ruijgrok, J. Chem. Phys., 52, 113 (1970); doi:10.1063/1.1672655.
- B.C. Garrett and D.G. Truhlar, J. Am. Chem. Soc., 101, 4534 (1979); doi:10.1021/ja00510a019.
- K. Song and W.L. Hase, J. Chem. Phys., 110, 6198 (1999); doi:10.1063/1.478525.
- S. Mitra and S.S. Bhattacharyya, J. Phys. At. Mol. Opt. Phys., 27, 1773 (1994); doi:10.1088/0953-4075/27/9/015.
- W.L. Hase, Acc. Chem. Res., 31, 659 (1998); doi:10.1021/ar970156c.
- L. Yao, A.M. Mebel, H.F. Lu, H.J. Neusser and S.H. Lin, J. Phys. Chem. A, 111, 6722 (2007); doi:10.1021/jp069012i.
- L. Yao, Y.L. Liu and S.H. Lin, Mod. Phys. Lett. B, 22, 3043 (2008); doi:10.1142/S0217984908017552.
- L. Yao and S.H. Lin, Sci. China Ser. B, 51, 1146 (2008); doi:10.1007/s11426-008-0125-1.
- L. Yao, R.X. He, A.M. Mebel and S.H. Lin, Chem. Phys. Lett., 470, 210 (2009); doi:10.1016/j.cplett.2009.01.074.
- L. Yao, A.M. Mebel and S.H. Lin, J. Phys. Chem. A, 113, 14664 (2009); doi:10.1021/jp9044379.
- Y. Shao, L. Yao and S.H. Lin, Chem. Phys. Lett., 478, 277 (2009); doi:10.1016/j.cplett.2009.07.051.
- Y. Shao, L. Yao, Y.C. Mao and J.J. Zhong, Chem. Phys. Lett., 501, 134 (2010); doi:10.1016/j.cplett.2010.10.041.
- M.J. Frisch et al., Gaussian 03, revision C. 02, Gaussian, Inc.: Wallingford, CT, 2004.
- J.I. Steinfeld, J.S. Francisco and W.L. Hase, Chemical Kinetics and Dynamics, Prentice-Hall, Englewood Cliffs, NJ (1989).
- D.G. Truhlar, W.L. Hase and J.T. Hynes, J. Phys. Chem., 87, 2664 (1983); doi:10.1021/j100238a003.
- H. Eyring, S.H. Lin and S.M. Lin, Basic Chemical Kinetics, Wiley-Interscience Publication: New York (1980).
- L. Claes, J.-P. François and M.S. Deleuze, J. Am. Chem. Soc., 125, 7129 (2003); doi:10.1021/ja021295e.
References
K. Yamada, T. Nakagawa, K. Kuchitsu and Y.B.J. Morino, Mol. Spectrosc., 38, 70 (1971); doi:10.1016/0022-2852(71)90094-4.
J.L. Duncan and P.D. Mallinson, Chem. Phys. Lett., 23, 597 (1973); doi:10.1016/0009-2614(73)89037-2.
W.H. Miller, J. Am. Chem. Soc., 101, 6810 (1979); doi:10.1021/ja00517a004.
J.D. Goddard and H.F. Schaefer III, J. Chem. Phys., 70, 5117 (1979); doi:10.1063/1.437353.
M. Dupuis, W.A. Lester Jr., B.H. Lengsfield III and B. Lui, J. Chem. Phys., 79, 6167 (1983); doi:10.1063/1.445799.
J. Troe, J. Phys. Chem., 88, 4375 (1984); doi:10.1021/j150663a038.
W.F. Polik, D.R. Guyer and C.B. Moore, J. Chem. Phys., 92, 3453 (1990); doi:10.1063/1.457857.
B.S.J. Jursic, Mol. Struct. (Theochem), 418, 11 (1997); doi:10.1016/S0166-1280(97)00018-3.
J.-S.-K. Yu and C.H. Yu, Chem. Phys. Lett., 271, 259 (1997); doi:10.1016/S0009-2614(97)00456-9.
L.M.M de A. Martins, G. Arbilla and E.C. da Silva, Phys. Chem. A., 102, 10805 (1998); doi:10.1021/jp982962m.
G.F. Bauerfeldt, L.M.M. de Albuquerque, G. Arbilla and E.C. da Silva, J. Mol. Struct. (Theochem), 580, 147 (2002); doi:10.1016/S0166-1280(01)00609-1.
T. Yonehara and S. Kato, J. Chem. Phys., 117, 11131 (2002); doi:10.1063/1.1523058.
X.B. Zhang, S.L. Zou, L.B. Harding and J.M. Bowman, J. Phys. Chem. A, 108, 8980 (2004); doi:10.1021/jp048339l.
D. Townsend, Science, 306, 1158 (2004); doi:10.1126/science.1104386.
(a) S.A. Lahankar, S.D. Chambreau, D. Townsend, F. Suits, J. Farnum, X. Zhang, J.M. Bowman and A.G. Suits, J. Chem. Phys., 125, 044303 (2006); doi:10.1063/1.2202241.; (b) S.A. Lahankar, S.D. Chambreau, X. Zhang, J.M. Bowman and A.G. Suits, J. Chem. Phys., 126, 044314 (2007); doi:10.1063/1.2429660.
A.G. Suits, Acc. Chem. Res., 41, 873 (2008); doi:10.1021/ar8000734.
P.L. Houston and C.B. Moore, J. Chem. Phys., 65, 757 (1976); doi:10.1063/1.433092.
R. Krems and S. Nordholm, Z. Phys. Chem., 214, 1467 (2000); doi:10.1524/zpch.2000.214.11.1467.
D.L. Shen and H.O. Pritchard, J. Chem. Soc., Faraday Trans., 92, 1297 (1996); doi:10.1039/ft9969201297.
P. Hobza and Z. Havlas, Chem. Rev., 100, 4253 (2000); doi:10.1021/cr990050q.
J.C. Tou and S.H. Lin, J. Chem. Phys., 49, 4187 (1968); doi:10.1063/1.1670734.
S.H. Lin and H. Eyring, J. Chem. Phys., 39, 1577 (1963); doi:10.1063/1.1734483.
S.H. Lin and H. Eyring, J. Chem. Phys., 43, 2153 (1964); doi:10.1063/1.1697098.
G.H. Peslherbe and W.L. Hase, J. Chem. Phys., 105, 7432 (1996); doi:10.1063/1.472571.
M.R. Hoare and Th.W. Ruijgrok, J. Chem. Phys., 52, 113 (1970); doi:10.1063/1.1672655.
B.C. Garrett and D.G. Truhlar, J. Am. Chem. Soc., 101, 4534 (1979); doi:10.1021/ja00510a019.
K. Song and W.L. Hase, J. Chem. Phys., 110, 6198 (1999); doi:10.1063/1.478525.
S. Mitra and S.S. Bhattacharyya, J. Phys. At. Mol. Opt. Phys., 27, 1773 (1994); doi:10.1088/0953-4075/27/9/015.
W.L. Hase, Acc. Chem. Res., 31, 659 (1998); doi:10.1021/ar970156c.
L. Yao, A.M. Mebel, H.F. Lu, H.J. Neusser and S.H. Lin, J. Phys. Chem. A, 111, 6722 (2007); doi:10.1021/jp069012i.
L. Yao, Y.L. Liu and S.H. Lin, Mod. Phys. Lett. B, 22, 3043 (2008); doi:10.1142/S0217984908017552.
L. Yao and S.H. Lin, Sci. China Ser. B, 51, 1146 (2008); doi:10.1007/s11426-008-0125-1.
L. Yao, R.X. He, A.M. Mebel and S.H. Lin, Chem. Phys. Lett., 470, 210 (2009); doi:10.1016/j.cplett.2009.01.074.
L. Yao, A.M. Mebel and S.H. Lin, J. Phys. Chem. A, 113, 14664 (2009); doi:10.1021/jp9044379.
Y. Shao, L. Yao and S.H. Lin, Chem. Phys. Lett., 478, 277 (2009); doi:10.1016/j.cplett.2009.07.051.
Y. Shao, L. Yao, Y.C. Mao and J.J. Zhong, Chem. Phys. Lett., 501, 134 (2010); doi:10.1016/j.cplett.2010.10.041.
M.J. Frisch et al., Gaussian 03, revision C. 02, Gaussian, Inc.: Wallingford, CT, 2004.
J.I. Steinfeld, J.S. Francisco and W.L. Hase, Chemical Kinetics and Dynamics, Prentice-Hall, Englewood Cliffs, NJ (1989).
D.G. Truhlar, W.L. Hase and J.T. Hynes, J. Phys. Chem., 87, 2664 (1983); doi:10.1021/j100238a003.
H. Eyring, S.H. Lin and S.M. Lin, Basic Chemical Kinetics, Wiley-Interscience Publication: New York (1980).
L. Claes, J.-P. François and M.S. Deleuze, J. Am. Chem. Soc., 125, 7129 (2003); doi:10.1021/ja021295e.