Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Functional Characteristics of Inorganic Pyrophosphatase from Psychrotroph Shewanella sp. AS-11 upon Activation by Various Divalent Cations
Asian Journal of Chemistry,
Vol. 26 No. 2 (2014): Vol 26 Issue 2
Abstract
Inorganic pyrophosphatase (PPase) is an essential enzyme in all living organisms, as it hydrolyzes inorganic pyrophosphate (PPi) to phosphate (Pi). Inorganic pyrophosphatase are only active in the presence of metal ion cofactors. This research investigated effects of various divalent cations on the functional characteristics of psychrotroph Shewanella sp. AS-11 (Sh-PPase). The results showed Co2+, Mn2+ and Zn2+ markedly activated the enzyme. The optimal temperature for activity of Sh-PPase activated by Mn2+ was surprisingly low (5 °C), while those of Zn, Co and Mg-activated enzymes were 20, 30 and 40 °C, respectively. The specific activities of Sh-PPases activated by Co2+, Mn2+ and Zn2+ were 100-, 45- and 12-fold higher than Mg-activated Sh-PPase at 5 ºC, respectively. Sh-PPase activated by Co2+ or Mn2+ was stable up to 40 ºC and activated by Zn2+ up to 50 ºC. Activation of Sh-PPase with Co2+, Mn2+ and Zn2+ enhanced kcat, but did not significantly affect Km. Thus divalent cations markedly influenced the catalytic efficiency, temperature dependency and thermo-stability of Sh-PPase. Mn2+ or Co2+ ions are required to gain cold-adapted characteristics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.Y. Morita, Bacteriol. Rev., 39, 144 (1975).
- J.C. Marx, T. Collins, S. D’Amico, G. Feller and C. Gerday, Mar. Biotechnol., 9, 293 (2007); doi:10.1007/s10126-006-6103-8.
- G. Feller, E. Narinx, J.L. Arpigny, M. Aittaleb, E. Baise, S. Genicot and C. Gerday, FEMS Microbiol. Rev., 18, 189 (1996); doi:10.1111/j.1574-6976.1996.tb00236.x.
- J.I. Morits, T. Nagahashi, A. Tanizaki and T. Yasui, J. Fac. Agric. Hokkaido Univ., 61, 351 (1983).
- A.A. Goncalves and J.L.D. Ribeiro, Pan-Am. J. Aquat. Sci., 3, 237 (2008).
- A.A. Baykov, B.S. Cooperman and R. Lahti, In ed.: H.C. Schroder, Cytoplasmic Inorganic Pyrophosphatase, In: Inorganic Polyphosphates, Springer-Verlag, Berlin, pp. 127-150 (1999).
- J. Chen, A. Brevet, M. Fromant, F. Leveque, J.M. Schmitter, S. Blanque and P. Plateau, J. Bacteriol., 172, 5686 (1990).
- M. Lundin, H. Baltscheffsky and H. Ronne, J. Biol. Chem., 266, 12168 (1991).
- A.B. Zyryanov, A.V. Vener, A. Salminen, A. Goldman, R. Lahti and A.A. Baykov, Biochemistry, 43, 1065 (2004); doi:10.1021/bi0357513.
- S. Ahn, A.J. Milner, K. Futterer, M. Konopka, M. Ilias, T.M. Young and S.A. White, J. Mol. Biol., 313, 797 (2001); doi:10.1006/jmbi.2001.5070.
- T. Shintani, T. Uchiumi, T. Yonezawa, A. Salminen, A.A. Baykov, R. Lahti and A. Hachimori, FEBS Lett., 439, 263 (1998); doi:10.1016/S0014-5793(98)01381-7.
- T.W. Young, N.J. Kuhn, A. Wadeson, S. Ward, D. Burges and G.D. Cooke, Microbiology, 144, 2563 (1998); doi:10.1099/00221287-144-9-2563.
- M.K. Islam, T. Miyoshi, T. Isobe, H. Kasuga-Aoki, T. Arakawa, Y. Matsumoto, Y. Yokomizo, N. Tsuji and N. Tsuji, J. Vet. Med. Sci., 66, 221 (2004); doi:10.1292/jvms.66.221.
- A.B. Zyryanov, A.S. Shestakov, R. Lahti and A. Baykov, Biochem. J., 367, 901 (2002); doi:10.1042/BJ20020880.
- A.N. Perfenyev, A. Salminen, P. Halonen, A. Hachimori, A.A. Baykov and R. Lahti, J. Biol. Chem., 276, 24511 (2001).
- E.L. Ginting, C. Maeganeku, S. Iwasaki, H. Motoshima and K. Watanabe, Prep. Biochem. Biotechnol. 44, 480 (2014); doi: 10.1080/10826068.2013.833114.
- M.M. Bradford, Anal. Biochem., 72, 248 (1976); doi:10.1016/0003-2697(76)90527-3.
- K. Hoelzle, S. Peter, M. Sidler, M.M. Kramer, M.M. Wittenbrink, K.M. Felder and L.E. Hoelzle, BMC Microbiol., 10, 194 (2010); doi:10.1186/1471-2180-10-194.
- N.J. Kuhn and S. Ward, Arch. Biochem. Biophys., 354, 47 (1998); doi:10.1006/abbi.1998.0629.
- A. Butler, Science, 281, 207 (1998); doi:10.1126/science.281.5374.207.
- M.C. Merckel, I.P. Fabrichniy, A. Salminen, N. Kalkkinen, A.A. Baykov, R. Lahti and A. Goldman, Structure, 9, 289 (2001); doi:10.1016/S0969-2126(01)00587-1.
- M.K. Rantanen, L. Lehtiö, L. Rajagopal, C.E. Rubens and A. Goldman, Acta Crystallogr. D Biol. Crystallogr., 63, 738 (2007); doi:10.1107/S0907444907019695.
- H. Ordaz, A. Sosa, I. Romero and H. Celis, Int. J. Biochem., 24, 1633 (1992); doi:10.1016/0020-711X(92)90181-Y.
- I. Velazquez, H. Celis and I. Romero, Biometals, 6, 143 (1993); doi:10.1007/BF00205852.
- H. Celis and I. Romero, J. Bioenerg. Biomembr., 19, 255 (1987); doi:10.1007/BF00762416.
- J.M. Coolbear Whittaker and R.M. Daniel, Biochem. J., 287, 367 (1992).
- C. Gerday, M. Aittaleb, M. Bentahir, J. Chessa, P. Claverie, T. Collins, S. D’Amico, J. Dumont, G. Garsoux, D. Georlette, A. Hoyoux, T. Lonhienne, M. Meuwis and G. Feller, Trends Biotechnol., 18, 103 (2000); doi:10.1016/S0167-7799(99)01413-4.
- C.J. Marshall, Trends Biotechnol., 15, 359 (1997); doi:10.1016/S0167-7799(97)01086-X.
- I.P. Fabrichniy, L. Lehtiö, A. Salminen, A.B. Zyryanov, A.A. Baykov, R. Lahti and A. Goldman, Biochemistry, 43, 14403 (2004); doi:10.1021/bi0484973.
- G. Feller and C. Gerday, Cell. Mol. Life Sci., 53, 830 (1997); doi:10.1007/s000180050103.
- B.A. Tashpulatova and K.D. Davranova, Plenum Pub Corp, 6, 838 (1992).
- S. D’Amico, P. Claverie, T. Collins, D. Georlette, E. Gratia, A. Hoyoux, M. Meuwis, G. Feller and C. Gerday, Philos. Trans. R. Soc. Lond., 357, 917 (2002); doi:10.1098/rstb.2002.1105.
- M.K. Ray, G.S. Kumar, K. Janiyani, K. Kannan, P. Jagtap, M.K. Basu and S. Shivaji, J. Biosci., 23, 423 (1998); doi:10.1007/BF02936136.
References
R.Y. Morita, Bacteriol. Rev., 39, 144 (1975).
J.C. Marx, T. Collins, S. D’Amico, G. Feller and C. Gerday, Mar. Biotechnol., 9, 293 (2007); doi:10.1007/s10126-006-6103-8.
G. Feller, E. Narinx, J.L. Arpigny, M. Aittaleb, E. Baise, S. Genicot and C. Gerday, FEMS Microbiol. Rev., 18, 189 (1996); doi:10.1111/j.1574-6976.1996.tb00236.x.
J.I. Morits, T. Nagahashi, A. Tanizaki and T. Yasui, J. Fac. Agric. Hokkaido Univ., 61, 351 (1983).
A.A. Goncalves and J.L.D. Ribeiro, Pan-Am. J. Aquat. Sci., 3, 237 (2008).
A.A. Baykov, B.S. Cooperman and R. Lahti, In ed.: H.C. Schroder, Cytoplasmic Inorganic Pyrophosphatase, In: Inorganic Polyphosphates, Springer-Verlag, Berlin, pp. 127-150 (1999).
J. Chen, A. Brevet, M. Fromant, F. Leveque, J.M. Schmitter, S. Blanque and P. Plateau, J. Bacteriol., 172, 5686 (1990).
M. Lundin, H. Baltscheffsky and H. Ronne, J. Biol. Chem., 266, 12168 (1991).
A.B. Zyryanov, A.V. Vener, A. Salminen, A. Goldman, R. Lahti and A.A. Baykov, Biochemistry, 43, 1065 (2004); doi:10.1021/bi0357513.
S. Ahn, A.J. Milner, K. Futterer, M. Konopka, M. Ilias, T.M. Young and S.A. White, J. Mol. Biol., 313, 797 (2001); doi:10.1006/jmbi.2001.5070.
T. Shintani, T. Uchiumi, T. Yonezawa, A. Salminen, A.A. Baykov, R. Lahti and A. Hachimori, FEBS Lett., 439, 263 (1998); doi:10.1016/S0014-5793(98)01381-7.
T.W. Young, N.J. Kuhn, A. Wadeson, S. Ward, D. Burges and G.D. Cooke, Microbiology, 144, 2563 (1998); doi:10.1099/00221287-144-9-2563.
M.K. Islam, T. Miyoshi, T. Isobe, H. Kasuga-Aoki, T. Arakawa, Y. Matsumoto, Y. Yokomizo, N. Tsuji and N. Tsuji, J. Vet. Med. Sci., 66, 221 (2004); doi:10.1292/jvms.66.221.
A.B. Zyryanov, A.S. Shestakov, R. Lahti and A. Baykov, Biochem. J., 367, 901 (2002); doi:10.1042/BJ20020880.
A.N. Perfenyev, A. Salminen, P. Halonen, A. Hachimori, A.A. Baykov and R. Lahti, J. Biol. Chem., 276, 24511 (2001).
E.L. Ginting, C. Maeganeku, S. Iwasaki, H. Motoshima and K. Watanabe, Prep. Biochem. Biotechnol. 44, 480 (2014); doi: 10.1080/10826068.2013.833114.
M.M. Bradford, Anal. Biochem., 72, 248 (1976); doi:10.1016/0003-2697(76)90527-3.
K. Hoelzle, S. Peter, M. Sidler, M.M. Kramer, M.M. Wittenbrink, K.M. Felder and L.E. Hoelzle, BMC Microbiol., 10, 194 (2010); doi:10.1186/1471-2180-10-194.
N.J. Kuhn and S. Ward, Arch. Biochem. Biophys., 354, 47 (1998); doi:10.1006/abbi.1998.0629.
A. Butler, Science, 281, 207 (1998); doi:10.1126/science.281.5374.207.
M.C. Merckel, I.P. Fabrichniy, A. Salminen, N. Kalkkinen, A.A. Baykov, R. Lahti and A. Goldman, Structure, 9, 289 (2001); doi:10.1016/S0969-2126(01)00587-1.
M.K. Rantanen, L. Lehtiö, L. Rajagopal, C.E. Rubens and A. Goldman, Acta Crystallogr. D Biol. Crystallogr., 63, 738 (2007); doi:10.1107/S0907444907019695.
H. Ordaz, A. Sosa, I. Romero and H. Celis, Int. J. Biochem., 24, 1633 (1992); doi:10.1016/0020-711X(92)90181-Y.
I. Velazquez, H. Celis and I. Romero, Biometals, 6, 143 (1993); doi:10.1007/BF00205852.
H. Celis and I. Romero, J. Bioenerg. Biomembr., 19, 255 (1987); doi:10.1007/BF00762416.
J.M. Coolbear Whittaker and R.M. Daniel, Biochem. J., 287, 367 (1992).
C. Gerday, M. Aittaleb, M. Bentahir, J. Chessa, P. Claverie, T. Collins, S. D’Amico, J. Dumont, G. Garsoux, D. Georlette, A. Hoyoux, T. Lonhienne, M. Meuwis and G. Feller, Trends Biotechnol., 18, 103 (2000); doi:10.1016/S0167-7799(99)01413-4.
C.J. Marshall, Trends Biotechnol., 15, 359 (1997); doi:10.1016/S0167-7799(97)01086-X.
I.P. Fabrichniy, L. Lehtiö, A. Salminen, A.B. Zyryanov, A.A. Baykov, R. Lahti and A. Goldman, Biochemistry, 43, 14403 (2004); doi:10.1021/bi0484973.
G. Feller and C. Gerday, Cell. Mol. Life Sci., 53, 830 (1997); doi:10.1007/s000180050103.
B.A. Tashpulatova and K.D. Davranova, Plenum Pub Corp, 6, 838 (1992).
S. D’Amico, P. Claverie, T. Collins, D. Georlette, E. Gratia, A. Hoyoux, M. Meuwis, G. Feller and C. Gerday, Philos. Trans. R. Soc. Lond., 357, 917 (2002); doi:10.1098/rstb.2002.1105.
M.K. Ray, G.S. Kumar, K. Janiyani, K. Kannan, P. Jagtap, M.K. Basu and S. Shivaji, J. Biosci., 23, 423 (1998); doi:10.1007/BF02936136.