Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Phytochemical Contents, Antimicrobial and Antioxidant Properties of Gnaphalium uliginosum L. Ethanolic Extract and Essential Oil for Agricultural Uses
Corresponding Author(s) : Sharonova Natalia Leonidovna
Asian Journal of Chemistry,
Vol. 31 No. 11 (2019): Vol 31 Issue 11
Abstract
Gnaphalium uliginosum L. (Asteraceae) is widely used in phytotherapy and has a potential for agricultural utilization. The ethanolic extract was obtained from the maceration of air-dried plants, and the extract was then filtered and concentrated using a rotary evaporator. The essential oil was pressed from freshly harvested and crushed, aerial part of plants. The chemical compositions of ethanolic extract and essential oil of G. uliginosum L. (EOG) were investigated using gas chromatography/mass spectrometry (GC/MS). Nine constituents accounted for 77.3 % of the total detected components were determined at the ethanolic extract with a high proportion of sterols 42.8%, fatty acids 24.1 %, triterpenes 14.4 %. Twenty constituents were identified in essential oil of G. uliginosum L.; with α-pinene and estragole accounting for 54.0 %. The ethanolic extract was found to have a moderate antimicrobial activity (MIC values varied from 125 to 500 μg/mL), for S. aureus, B. cereus and A. solani significant activity (less than 62.5 μg/mL). The essential oil was found to have a moderate (MICs 500-1000 μg/mL) and strong activities (31.3-250 μg/mL). The antioxidant activity was evaluated using chemiluminescent assay. The ethanolic extract of G. uliginosum L. acted as a medium-strength antioxidant at concentrations of less than 0.1 mg/mL. The essential oil made be regarded as a weak strength antioxidant.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.M. Meela, L.K. Mdee, P. Masoko and J.N. Eloff, S. Afr. J. Bot., 442 (2019); https://doi.org/10.1016/j.sajb.2018.12.007.
- N. Akhtar, H. ul-Ihsan and B. Mirza, Arab. J. Chem., 11, 1223 (2018); https://doi.org/10.1016/j.arabjc.2015.01.013.
- A.R.H. da Silva L.Q.S. Lopes, G.B. Cassanego, P.R. de Jesus, K.C. Figueredo, R.C.V. Santos, G. Lopes and L.D. Bauermann, Biomed. J. 41, 194 (2018); https://doi.org/10.1016/j.bj.2018.04.006.
- P. Wikaningtyas and E.Y. Sukandar, Asian Pac. J. Trop. Biomed., 6, 16 (2016); https://doi.org/10.1016/j.apjtb.2015.08.003.
- T. Hintz, K.K. Matthews and R. Di, Biomed Res. Int., 2015, Article ID 246264 (2015); https://doi.org/10.1155/2015/246264.
- S. Kharchoufi, F. Licciardello, L. Siracusa, G. Muratore, M. Hamdi, and C. Restuccia, Ind. Crops Prod. 111, 345 (2018); https://doi.org/10.1016/j.indcrop.2017.10.037.
- A. Scavo, G. Pandino, C. Restuccia, L. Parafati, G. Cirvilleri and G. Mauromicale, Ind. Crops Prod., 129, 206 (2019); https://doi.org/10.1016/j.indcrop.2018.12.005.
- A.G. Borisova, V.P. Bochantsev, I.T. Vasilchenko, et al., ed.: V.L. Komarov, Gnaphallium L., Flora of the USSR, Publishing House of the Academy of Sciences, Moskow, Leningrad, pp. 381-404 (1959).
- A.N. Shikov, M. Kundracikova, T.L. Palama, O.N. Pozharitskaya, V.M. Kosman, V.G. Makarov, B. Galambosi, H.J. Kim, Y.P. Jang, Y.H. Choi and R. Verpoorte, Phytochem. Lett., 3, 45 (2010); https://doi.org/10.1016/j.phytol.2009.11.002.
- A.N. Shikov, O.N. Pozharitskaya, V.G. Makarov, H. Wagner, R. Verpoorte and M. Heinrich, J. Ethnopharmacol., 154, 481 (2014); https://doi.org/10.1016/j.jep.2014.04.007.
- R. Villagómez, M. Sánchez, O. Espejo, A. Zúñiga-Estrada, J.M. TorresValencia and P. Joseph-Nathan, Fitoterapia, 72, 692 (2001); https://doi.org/10.1016/S0367-326X(01)00303-3.
- W. Zhang, C.Z. Wu and S.Y. Fan, Chin. J. Nat. Med., 16, 347 (2018); https://doi.org/10.1016/S1875-5364(18)30066-9.
- X. Zheng, W. Wang, H.S. Piao, W.Q. Xu, H.B. Shi and C.G. Zhao, Molecules, 18, 8298 (2013); https://doi.org/10.3390/molecules18078298.
- CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, CLSI: Wayne, Pennsylvania, USA (2018).
- V. Kanagarajan, M.R. Ezhilarasi and M. Gopalakrishnan, Org. Med. Chem. Lett., 1, 8 (2011); https://doi.org/10.1186/2191-2858-1-8.
- NCCLS, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, In: Approved Standard Wayne, Pennsylvania, USA, edn 2 (2002).
- V.E. Semenov, A.D. Voloshina, N.V. Kulik, A.S. Strobykina, R.K. Giniyatullin, L.F. Saifina, A.E. Nikolaev, E.S. Krylova, V.V. Zobov, and V.S. Reznik, Russ. Chem. Bull., 64, 2885 (2015); https://doi.org/10.1007/s11172-015-1243-5.
- A. Krasowska, D. Rosiak, K. Szkapiak and M. Lukaszewicz, Curr. Top. Biophys., 24, 89 (2000).
- A.B. Vyshtakalyuk, V.E. Semenov, I.A. Sudakov, K.N. Bushmeleva, L.F. Gumarova, A.A. Parfenov, N.G. Nazarov, I.V. Galyametdinova and V. Zobov, Russ. Chem. Bull., 67, 705 (2018); https://doi.org/10.1007/s11172-018-2126-3.
- C. Desmarchelier, M. Repetto, J. Coussio, S. Llesuy and G. Ciccia, Int. J. Pharmacogn., 35, 288 (1997); https://doi.org/10.1076/phbi.35.4.288.13303.
- S. Van Vuuren and D. Holl, J. Ethnopharmacol., 208, 236 (2017); https://doi.org/10.1016/j.jep.2017.07.011.
- K.C. Wat, T. Johns and G.H.N. Towers, J. Ethnopharmacol., 2, 279 (1980); https://doi.org/10.1016/S0378-8741(80)81006-3.
- M.T. Ghaneian, M.H. Ehrampoush, A. Jebali, S. Hekmatimoghaddam and M. Mahmoudi, Environ. Health Eng. Manag. J., 2, 13 (2015).
- M.T. Islam, E.S. Ali, S.J. Uddin, S. Shaw, M.A. Islam, M.I. Ahmed, M.C. Shill, U.K. Karmakar, N.S. Yarla, I.N. Khan, M.M. Billah, M.D. Pieczynska, G. Zengin, C. Malainer, F. Nicoletti, D. Gulei, I. BerindanNeagoe, A. Apostolov, M. Banach, A.W.K. Yeung, A. El-Demerdash, J.B. Xiao, P. Dey, S. Yele, A. Jozwik, N. Strzalkowska, J. Marchewka, K.R.R. Rengasamy, J. Horbanczuk, M.A. Kamal, M.S. Mubarak, S.K. Mishra, J.A. Shilpi and A.G. Atanasov, Food Chem. Toxicol., 121, 82 (2018); https://doi.org/10.1016/j.fct.2018.08.032.
- M.T. Islam, M.V.O.B. de Alencar, K. da Conceição Machado, K. da Conceição Machado, A.A. de Carvalho Melo-Cavalcante, D.P. de Sousa and R.M. de Freitas, Chem. Biol. Interact., 240, 60 (2015); https://doi.org/10.1016/j.cbi.2015.07.010.
- S.P. Prabha, C. Karthik and S.H. Chandrika, Biocatal. Agric. Biotechnol., 17, 736 (2019); https://doi.org/10.1016/j.bcab.2019.01.026.
- B.C. Bindu, D.P. Mishra and B. Narayan, J. Funct. Foods, 18, 224 (2015); https://doi.org/10.1016/j.jff.2015.07.008.
- N. Abdel-Raouf, N.M. Al-Enazi, A.A. Al-Homaidan, I.B.M. Ibraheem, M.R. Al-Othman and A.A. Hatamleh, Arab. J. Chem., 8, 32 (2015); https://doi.org/10.1016/j.arabjc.2013.09.033.
- C. Sunil, S.S. Irudayaraj, V. Duraipandiyan, N.A. Al-Dhabi, P. Agastian, and S. Ignacimuthu, Ind. Crops Prod., 61, 510 (2014); https://doi.org/10.1016/j.indcrop.2014.07.005.
- B. Delgado, P.S. Fernandez, A. Palop and P.M. Periago, Food Microbiol., 21, 327 (2004); https://doi.org/10.1016/S0740-0020(03)00075-3.
- M.R. Zahi, H. Liang and Q.P. Yuan, Food Control, 50, 554 (2015); https://doi.org/10.1016/j.foodcont.2014.10.001.
- I. Dammak, Z. Hamdi, S.K. El Euch, H. Zemni, A. Mliki, M. Hassouna and S. Lasram, Ind. Crops Prod., 128, 85 (2019); https://doi.org/10.1016/j.indcrop.2018.11.006.
- K. Yoshitomi, S. Taniguchi, K. Tanaka, Y. Uji, K. Akimitsu and K. Gomi, J. Plant Physiol., 191, 120 (2016); https://doi.org/10.1016/j.jplph.2015.12.008.
- A. Duarte, A. Luis, M. Oleastro and F.C. Domingues, Food Control, 61, 115 (2016); https://doi.org/10.1016/j.foodcont.2015.09.033.
- A. Prakash, V. Vadivel, D. Rubini and P. Nithyanand, Food Biosci., 28, 57 (2019); https://doi.org/10.1016/j.fbio.2019.01.018.
- T. Chaturvedi, A. Kumar, A. Kumar, R.S.Verma, R.C. Padalia, V. Sundaresan, A. Chauhan, D. Saikia, V.R. Singh and K.T. Venkatesha, Ind. Crops Prod., 118, 246 (2018); https://doi.org/10.1016/j.indcrop.2018.03.050.
- R.S.N. Brilhante, E.P. Caetano, R.A.C. de Lima, F.J.D. Marques, D. CasteloBranco, C.V.S. de Melo, G.M.D. Guedes, J.S. de Oliveira, Z.P. de Camargo, J.L.B. Moreira, A.J. Monteiro, T. Bandeira, R.D. Cordeiro, M.F.G. Rocha and J.J.C. Sidrim, Braz. J. Microbiol., 47, 917 (2016); https://doi.org/10.1016/j.bjm.2016.07.015.
- H.J. Yoo and S.K. Jwa, Arch. Oral Biol., 88, 42 (2018); https://doi.org/10.1016/j.archoralbio.2018.01.009.
- S.K. Kim and F. Karadeniz, Adv. Food Nutr. Res., 65, 223 (2012); https://doi.org/10.1016/B978-0-12-416003-3.00014-7.
- X.T. Cai, J. Yang, J.P. Zhou, W.G. Lu, C.P. Hu, Z.H. Gu, J.G. Huo, X.N. Wang and P. Cao, Bioorg. Med. Chem., 21, 84 (2013); https://doi.org/10.1016/j.bmc.2012.10.059.
- S. Jamuna, K. Karthika, S. Paulsamy, K. Thenmozhi, S. Kathiravan, and R. Venkatesh, Ind. Crops Prod., 70, 221 (2015); https://doi.org/10.1016/j.indcrop.2015.03.039.
References
M.M. Meela, L.K. Mdee, P. Masoko and J.N. Eloff, S. Afr. J. Bot., 442 (2019); https://doi.org/10.1016/j.sajb.2018.12.007.
N. Akhtar, H. ul-Ihsan and B. Mirza, Arab. J. Chem., 11, 1223 (2018); https://doi.org/10.1016/j.arabjc.2015.01.013.
A.R.H. da Silva L.Q.S. Lopes, G.B. Cassanego, P.R. de Jesus, K.C. Figueredo, R.C.V. Santos, G. Lopes and L.D. Bauermann, Biomed. J. 41, 194 (2018); https://doi.org/10.1016/j.bj.2018.04.006.
P. Wikaningtyas and E.Y. Sukandar, Asian Pac. J. Trop. Biomed., 6, 16 (2016); https://doi.org/10.1016/j.apjtb.2015.08.003.
T. Hintz, K.K. Matthews and R. Di, Biomed Res. Int., 2015, Article ID 246264 (2015); https://doi.org/10.1155/2015/246264.
S. Kharchoufi, F. Licciardello, L. Siracusa, G. Muratore, M. Hamdi, and C. Restuccia, Ind. Crops Prod. 111, 345 (2018); https://doi.org/10.1016/j.indcrop.2017.10.037.
A. Scavo, G. Pandino, C. Restuccia, L. Parafati, G. Cirvilleri and G. Mauromicale, Ind. Crops Prod., 129, 206 (2019); https://doi.org/10.1016/j.indcrop.2018.12.005.
A.G. Borisova, V.P. Bochantsev, I.T. Vasilchenko, et al., ed.: V.L. Komarov, Gnaphallium L., Flora of the USSR, Publishing House of the Academy of Sciences, Moskow, Leningrad, pp. 381-404 (1959).
A.N. Shikov, M. Kundracikova, T.L. Palama, O.N. Pozharitskaya, V.M. Kosman, V.G. Makarov, B. Galambosi, H.J. Kim, Y.P. Jang, Y.H. Choi and R. Verpoorte, Phytochem. Lett., 3, 45 (2010); https://doi.org/10.1016/j.phytol.2009.11.002.
A.N. Shikov, O.N. Pozharitskaya, V.G. Makarov, H. Wagner, R. Verpoorte and M. Heinrich, J. Ethnopharmacol., 154, 481 (2014); https://doi.org/10.1016/j.jep.2014.04.007.
R. Villagómez, M. Sánchez, O. Espejo, A. Zúñiga-Estrada, J.M. TorresValencia and P. Joseph-Nathan, Fitoterapia, 72, 692 (2001); https://doi.org/10.1016/S0367-326X(01)00303-3.
W. Zhang, C.Z. Wu and S.Y. Fan, Chin. J. Nat. Med., 16, 347 (2018); https://doi.org/10.1016/S1875-5364(18)30066-9.
X. Zheng, W. Wang, H.S. Piao, W.Q. Xu, H.B. Shi and C.G. Zhao, Molecules, 18, 8298 (2013); https://doi.org/10.3390/molecules18078298.
CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, CLSI: Wayne, Pennsylvania, USA (2018).
V. Kanagarajan, M.R. Ezhilarasi and M. Gopalakrishnan, Org. Med. Chem. Lett., 1, 8 (2011); https://doi.org/10.1186/2191-2858-1-8.
NCCLS, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, In: Approved Standard Wayne, Pennsylvania, USA, edn 2 (2002).
V.E. Semenov, A.D. Voloshina, N.V. Kulik, A.S. Strobykina, R.K. Giniyatullin, L.F. Saifina, A.E. Nikolaev, E.S. Krylova, V.V. Zobov, and V.S. Reznik, Russ. Chem. Bull., 64, 2885 (2015); https://doi.org/10.1007/s11172-015-1243-5.
A. Krasowska, D. Rosiak, K. Szkapiak and M. Lukaszewicz, Curr. Top. Biophys., 24, 89 (2000).
A.B. Vyshtakalyuk, V.E. Semenov, I.A. Sudakov, K.N. Bushmeleva, L.F. Gumarova, A.A. Parfenov, N.G. Nazarov, I.V. Galyametdinova and V. Zobov, Russ. Chem. Bull., 67, 705 (2018); https://doi.org/10.1007/s11172-018-2126-3.
C. Desmarchelier, M. Repetto, J. Coussio, S. Llesuy and G. Ciccia, Int. J. Pharmacogn., 35, 288 (1997); https://doi.org/10.1076/phbi.35.4.288.13303.
S. Van Vuuren and D. Holl, J. Ethnopharmacol., 208, 236 (2017); https://doi.org/10.1016/j.jep.2017.07.011.
K.C. Wat, T. Johns and G.H.N. Towers, J. Ethnopharmacol., 2, 279 (1980); https://doi.org/10.1016/S0378-8741(80)81006-3.
M.T. Ghaneian, M.H. Ehrampoush, A. Jebali, S. Hekmatimoghaddam and M. Mahmoudi, Environ. Health Eng. Manag. J., 2, 13 (2015).
M.T. Islam, E.S. Ali, S.J. Uddin, S. Shaw, M.A. Islam, M.I. Ahmed, M.C. Shill, U.K. Karmakar, N.S. Yarla, I.N. Khan, M.M. Billah, M.D. Pieczynska, G. Zengin, C. Malainer, F. Nicoletti, D. Gulei, I. BerindanNeagoe, A. Apostolov, M. Banach, A.W.K. Yeung, A. El-Demerdash, J.B. Xiao, P. Dey, S. Yele, A. Jozwik, N. Strzalkowska, J. Marchewka, K.R.R. Rengasamy, J. Horbanczuk, M.A. Kamal, M.S. Mubarak, S.K. Mishra, J.A. Shilpi and A.G. Atanasov, Food Chem. Toxicol., 121, 82 (2018); https://doi.org/10.1016/j.fct.2018.08.032.
M.T. Islam, M.V.O.B. de Alencar, K. da Conceição Machado, K. da Conceição Machado, A.A. de Carvalho Melo-Cavalcante, D.P. de Sousa and R.M. de Freitas, Chem. Biol. Interact., 240, 60 (2015); https://doi.org/10.1016/j.cbi.2015.07.010.
S.P. Prabha, C. Karthik and S.H. Chandrika, Biocatal. Agric. Biotechnol., 17, 736 (2019); https://doi.org/10.1016/j.bcab.2019.01.026.
B.C. Bindu, D.P. Mishra and B. Narayan, J. Funct. Foods, 18, 224 (2015); https://doi.org/10.1016/j.jff.2015.07.008.
N. Abdel-Raouf, N.M. Al-Enazi, A.A. Al-Homaidan, I.B.M. Ibraheem, M.R. Al-Othman and A.A. Hatamleh, Arab. J. Chem., 8, 32 (2015); https://doi.org/10.1016/j.arabjc.2013.09.033.
C. Sunil, S.S. Irudayaraj, V. Duraipandiyan, N.A. Al-Dhabi, P. Agastian, and S. Ignacimuthu, Ind. Crops Prod., 61, 510 (2014); https://doi.org/10.1016/j.indcrop.2014.07.005.
B. Delgado, P.S. Fernandez, A. Palop and P.M. Periago, Food Microbiol., 21, 327 (2004); https://doi.org/10.1016/S0740-0020(03)00075-3.
M.R. Zahi, H. Liang and Q.P. Yuan, Food Control, 50, 554 (2015); https://doi.org/10.1016/j.foodcont.2014.10.001.
I. Dammak, Z. Hamdi, S.K. El Euch, H. Zemni, A. Mliki, M. Hassouna and S. Lasram, Ind. Crops Prod., 128, 85 (2019); https://doi.org/10.1016/j.indcrop.2018.11.006.
K. Yoshitomi, S. Taniguchi, K. Tanaka, Y. Uji, K. Akimitsu and K. Gomi, J. Plant Physiol., 191, 120 (2016); https://doi.org/10.1016/j.jplph.2015.12.008.
A. Duarte, A. Luis, M. Oleastro and F.C. Domingues, Food Control, 61, 115 (2016); https://doi.org/10.1016/j.foodcont.2015.09.033.
A. Prakash, V. Vadivel, D. Rubini and P. Nithyanand, Food Biosci., 28, 57 (2019); https://doi.org/10.1016/j.fbio.2019.01.018.
T. Chaturvedi, A. Kumar, A. Kumar, R.S.Verma, R.C. Padalia, V. Sundaresan, A. Chauhan, D. Saikia, V.R. Singh and K.T. Venkatesha, Ind. Crops Prod., 118, 246 (2018); https://doi.org/10.1016/j.indcrop.2018.03.050.
R.S.N. Brilhante, E.P. Caetano, R.A.C. de Lima, F.J.D. Marques, D. CasteloBranco, C.V.S. de Melo, G.M.D. Guedes, J.S. de Oliveira, Z.P. de Camargo, J.L.B. Moreira, A.J. Monteiro, T. Bandeira, R.D. Cordeiro, M.F.G. Rocha and J.J.C. Sidrim, Braz. J. Microbiol., 47, 917 (2016); https://doi.org/10.1016/j.bjm.2016.07.015.
H.J. Yoo and S.K. Jwa, Arch. Oral Biol., 88, 42 (2018); https://doi.org/10.1016/j.archoralbio.2018.01.009.
S.K. Kim and F. Karadeniz, Adv. Food Nutr. Res., 65, 223 (2012); https://doi.org/10.1016/B978-0-12-416003-3.00014-7.
X.T. Cai, J. Yang, J.P. Zhou, W.G. Lu, C.P. Hu, Z.H. Gu, J.G. Huo, X.N. Wang and P. Cao, Bioorg. Med. Chem., 21, 84 (2013); https://doi.org/10.1016/j.bmc.2012.10.059.
S. Jamuna, K. Karthika, S. Paulsamy, K. Thenmozhi, S. Kathiravan, and R. Venkatesh, Ind. Crops Prod., 70, 221 (2015); https://doi.org/10.1016/j.indcrop.2015.03.039.