Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Optimization Study of Graphene Oxide Synthesis with Improvement of C/O Ratio
Corresponding Author(s) : Saksit Chanthai
Asian Journal of Chemistry,
Vol. 26 No. 5 (2014): Vol 26 Issue 5
Abstract
The present study was aimed to clarify detailed conditions of vigorous solid-state reaction as conventional method for graphene oxide. For optimization study, the effects of an initial concentration of KMnO4 (0.75-7.5 % w/v), reaction temperature (0-120 ºC) and an incubation time (1-48 h) were investigated. The obtained graphene oxide was characterized by Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, energy dispersive X-ray spectroscopy and scanning electron microscope (SEM) techniques. From the results, the optimum conditions for graphene oxide production were consisted of 4.5 % w/v KMnO4 at 80 ºC for 6 h. IR spectrum showed the characteristic peaks at wave number (cm-1) of 3367 (O-H), 1719 (C=O), 1224 and 1049 (C-O). Energy dispersive X-ray spectroscopy of the graphene oxide revealed the improved C/O ratio of 1.10, indicating more polar functional groups bound on the surface of graphene oxide due to the increasing oxidation by MnO4–. The amorphous graphene oxide was obtained as confirmed by XRD pattern. Additionally, SEM image showed drastically differences in the surfaces between graphene oxide and its graphite powder, depicting a graphene oxide’s smooth surface compared with that rough multilayer graphite powder. It could, thus, be gained a crucial factor affecting the graphene oxide synthesis from graphite powder under the optimized method.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li and M. Ye, Chem. Mater., 21, 3514 (2009); doi:10.1021/cm901247t.
- Y. Xue, Y. Liu, F. Lu, J. Qu, H. Chen and L. Dai, J. Phys. Chem. Lett., 3, 1607 (2012); doi:10.1021/jz3005877.
- K. Sablok, V. Bhalla, P. Sharma, R. Kaushal, S. Chaudhary and C.R. Suri, J. Hazard. Mater., 248-249, 322 (2013); doi:10.1016/j.jhazmat.2013.01.022.
- M. Moazzami Gudarzi, eXPRESS Polymer Lett., 6, 1017 (2012); doi:10.3144/expresspolymlett.2012.107.
- C.J. Madadrang, H.Y. Kim, G. Gao, N. Wang, J. Zhu, H. Feng, M. Gorring, M.L. Kasner and S. Hou, ACS Appl. Mater. Interfaces, 4, 1186 (2012); doi:10.1021/am201645g.
- J.L. Yan, G.J. Chen, J. Cao, W. Yang, B.H. Xie and M.B. Yang, New Carbon Mater., 27, 370 (2012); doi:10.1016/S1872-5805(12)60022-5.
- Y.S. Feng, J.J. Ma, X.Y. Lin, J.S. Zhang, P. Lv, H.J. Xu and L.B. Luo, Chin. Chem. Lett., 23, 1411 (2012); doi:10.1016/j.cclet.2012.10.009.
- J. Yu, B. Tonpheng, G. Gröbner and O. Andersson, Carbon, 49, 4858 (2011); doi:10.1016/j.carbon.2011.07.006.
- W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); doi:10.1021/ja01539a017.
References
J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li and M. Ye, Chem. Mater., 21, 3514 (2009); doi:10.1021/cm901247t.
Y. Xue, Y. Liu, F. Lu, J. Qu, H. Chen and L. Dai, J. Phys. Chem. Lett., 3, 1607 (2012); doi:10.1021/jz3005877.
K. Sablok, V. Bhalla, P. Sharma, R. Kaushal, S. Chaudhary and C.R. Suri, J. Hazard. Mater., 248-249, 322 (2013); doi:10.1016/j.jhazmat.2013.01.022.
M. Moazzami Gudarzi, eXPRESS Polymer Lett., 6, 1017 (2012); doi:10.3144/expresspolymlett.2012.107.
C.J. Madadrang, H.Y. Kim, G. Gao, N. Wang, J. Zhu, H. Feng, M. Gorring, M.L. Kasner and S. Hou, ACS Appl. Mater. Interfaces, 4, 1186 (2012); doi:10.1021/am201645g.
J.L. Yan, G.J. Chen, J. Cao, W. Yang, B.H. Xie and M.B. Yang, New Carbon Mater., 27, 370 (2012); doi:10.1016/S1872-5805(12)60022-5.
Y.S. Feng, J.J. Ma, X.Y. Lin, J.S. Zhang, P. Lv, H.J. Xu and L.B. Luo, Chin. Chem. Lett., 23, 1411 (2012); doi:10.1016/j.cclet.2012.10.009.
J. Yu, B. Tonpheng, G. Gröbner and O. Andersson, Carbon, 49, 4858 (2011); doi:10.1016/j.carbon.2011.07.006.
W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); doi:10.1021/ja01539a017.