Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Fluorescence Properties of Europium and 2-Acryloyl isoindoline-1,3-dione Complexes
Corresponding Author(s) : Huiqiong Ni
Asian Journal of Chemistry,
Vol. 26 No. 5 (2014): Vol 26 Issue 5
Abstract
This paper studies the process conditions on the fluorescence properties of ternary complex compound of Eu(AID)2Phen. The conditions are feeding method, feeding order, feeding ratio and synthesis temperature. It reveals that the feeding method, feeding order and feeding ratio have greater impact on the fluorescence properties. Within a synthesis temperature range of 30-70 ºC, the fluorescence of Eu(AID)2Phen is enhanced. When the temperature exceeds 70 ºC, the fluorescence of Eu(AID)2Phen reduces. The results come to a conclusion of the best synthesis condition, that is, when synthesis temperature is 50 ºC, feeding ratio of EuCl3, 2-acryloyl isoindoline-1,3-dione and 1,10-phenanthroline is 1:2:1 and the feeding order is adding N-acryloyl phthalimide (AID) first, then 1,10-phenanthroline, the product Eu(AID)2Phen has a best fluorescent effect.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Pérez-Ruiz, R. Fichtler, Y. Diaz Miara, M. Nicoul, D. Schaniel, H. Neumann, M. Beller, D. Blunk, A.G. Griesbeck and A. Jacobi von Wangelin, J. Fluoresc., 20, 657 (2010); doi:10.1007/s10895-010-0598-0.
- Z.M. Cheng, Z. Xu and F.J. Zhang, Acta Opt. Sin., 30, 1096 (2010).
- G. Cheng, C.P. Wei, X.M. Ren et al., J. Chinese Soc. Earths, 30, 157 (2012).
- J.Q. Xu, X. Zhang and L.M. Wang, New Chemical Mater., 39, 22 (2011).
- G. Ceyhan, M. Tümer, M. Köse, V. McKee and S. Akar, J. Lumin., 132, 2917 (2012); doi:10.1016/j.jlumin.2012.05.013.
- J.A. Mikroyannidis, L.R. Tsai and Y. Chen, Synth. Met., 159, 1195 (2009); doi:10.1016/j.synthmet.2009.02.014.
- R. Pascale, A. Carocci, A. Catalano, G. Lentini, A. Spagnoletta, M.M. Cavalluzzi, F. De Santis, A. De Palma, V. Scalera and C. Franchini, Bioorg. Med. Chem., 18, 5903 (2010); doi:10.1016/j.bmc.2010.06.088.
- L. Zhang and Z.L. Xiao, New Chemical Mater., 37, 43 (2009).
- B. Yan and M. Guo, J. Photochem. Photobiol. Chem., 257, 34 (2013); doi:10.1016/j.jphotochem.2013.02.013.
- Y.Y. Li, Y. Tian, Y.J. Hua and S. Xu, J. Non-Cryst. Solids, 376, 38 (2013); doi:10.1016/j.jnoncrysol.2013.04.038.
References
R. Pérez-Ruiz, R. Fichtler, Y. Diaz Miara, M. Nicoul, D. Schaniel, H. Neumann, M. Beller, D. Blunk, A.G. Griesbeck and A. Jacobi von Wangelin, J. Fluoresc., 20, 657 (2010); doi:10.1007/s10895-010-0598-0.
Z.M. Cheng, Z. Xu and F.J. Zhang, Acta Opt. Sin., 30, 1096 (2010).
G. Cheng, C.P. Wei, X.M. Ren et al., J. Chinese Soc. Earths, 30, 157 (2012).
J.Q. Xu, X. Zhang and L.M. Wang, New Chemical Mater., 39, 22 (2011).
G. Ceyhan, M. Tümer, M. Köse, V. McKee and S. Akar, J. Lumin., 132, 2917 (2012); doi:10.1016/j.jlumin.2012.05.013.
J.A. Mikroyannidis, L.R. Tsai and Y. Chen, Synth. Met., 159, 1195 (2009); doi:10.1016/j.synthmet.2009.02.014.
R. Pascale, A. Carocci, A. Catalano, G. Lentini, A. Spagnoletta, M.M. Cavalluzzi, F. De Santis, A. De Palma, V. Scalera and C. Franchini, Bioorg. Med. Chem., 18, 5903 (2010); doi:10.1016/j.bmc.2010.06.088.
L. Zhang and Z.L. Xiao, New Chemical Mater., 37, 43 (2009).
B. Yan and M. Guo, J. Photochem. Photobiol. Chem., 257, 34 (2013); doi:10.1016/j.jphotochem.2013.02.013.
Y.Y. Li, Y. Tian, Y.J. Hua and S. Xu, J. Non-Cryst. Solids, 376, 38 (2013); doi:10.1016/j.jnoncrysol.2013.04.038.